These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 35896425)
1. Assembler artifacts include misassembly because of unsafe unitigs and underassembly because of bidirected graphs. Rahman A; Medvedev P Genome Res; 2022 Sep; 32(9):1746-1753. PubMed ID: 35896425 [TBL] [Abstract][Full Text] [Related]
2. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches. Cherukuri Y; Janga SC BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636 [TBL] [Abstract][Full Text] [Related]
3. Fast de Bruijn Graph Compaction in Distributed Memory Environments. Pan T; Nihalani R; Aluru S IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):136-148. PubMed ID: 30072337 [TBL] [Abstract][Full Text] [Related]
4. Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads. Bankevich A; Bzikadze AV; Kolmogorov M; Antipov D; Pevzner PA Nat Biotechnol; 2022 Jul; 40(7):1075-1081. PubMed ID: 35228706 [TBL] [Abstract][Full Text] [Related]
5. Safe and Complete Contig Assembly Through Omnitigs. Tomescu AI; Medvedev P J Comput Biol; 2017 Jun; 24(6):590-602. PubMed ID: 27749096 [TBL] [Abstract][Full Text] [Related]
6. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Li H Bioinformatics; 2012 Jul; 28(14):1838-44. PubMed ID: 22569178 [TBL] [Abstract][Full Text] [Related]
7. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs. Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174 [TBL] [Abstract][Full Text] [Related]
8. Integration of string and de Bruijn graphs for genome assembly. Huang YT; Liao CF Bioinformatics; 2016 May; 32(9):1301-7. PubMed ID: 26755626 [TBL] [Abstract][Full Text] [Related]
9. Simplitigs as an efficient and scalable representation of de Bruijn graphs. Břinda K; Baym M; Kucherov G Genome Biol; 2021 Apr; 22(1):96. PubMed ID: 33823902 [TBL] [Abstract][Full Text] [Related]
10. Omega: an overlap-graph de novo assembler for metagenomics. Haider B; Ahn TH; Bushnell B; Chai J; Copeland A; Pan C Bioinformatics; 2014 Oct; 30(19):2717-22. PubMed ID: 24947750 [TBL] [Abstract][Full Text] [Related]
11. Integrating long-range connectivity information into de Bruijn graphs. Turner I; Garimella KV; Iqbal Z; McVean G Bioinformatics; 2018 Aug; 34(15):2556-2565. PubMed ID: 29554215 [TBL] [Abstract][Full Text] [Related]
12. Assembly of long error-prone reads using de Bruijn graphs. Lin Y; Yuan J; Kolmogorov M; Shen MW; Chaisson M; Pevzner PA Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8396-E8405. PubMed ID: 27956617 [TBL] [Abstract][Full Text] [Related]
16. GABenchToB: a genome assembly benchmark tuned on bacteria and benchtop sequencers. Jünemann S; Prior K; Albersmeier A; Albaum S; Kalinowski J; Goesmann A; Stoye J; Harmsen D PLoS One; 2014; 9(9):e107014. PubMed ID: 25198770 [TBL] [Abstract][Full Text] [Related]
17. FastEtch: A Fast Sketch-Based Assembler for Genomes. Ghosh P; Kalyanaraman A IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776 [TBL] [Abstract][Full Text] [Related]
18. Clover: a clustering-oriented de novo assembler for Illumina sequences. Hsieh MF; Lu CL; Tang CY BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354 [TBL] [Abstract][Full Text] [Related]
19. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix. Yoon S; Kim D; Kang K; Park WJ BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798 [TBL] [Abstract][Full Text] [Related]
20. Coverage-preserving sparsification of overlap graphs for long-read assembly. Jain C Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36892439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]