BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 35896777)

  • 1. Coinoculation impact on plant growth promotion: a review and meta-analysis on coinoculation of rhizobia and plant growth-promoting bacilli in grain legumes.
    Kaschuk G; Auler AC; Vieira CE; Dakora FD; Jaiswal SK; da Cruz SP
    Braz J Microbiol; 2022 Dec; 53(4):2027-2037. PubMed ID: 35896777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonnodulating Bradyrhizobium spp. Modulate the Benefits of Legume-Rhizobium Mutualism.
    Gano-Cohen KA; Stokes PJ; Blanton MA; Wendlandt CE; Hollowell AC; Regus JU; Kim D; Patel S; Pahua VJ; Sachs JL
    Appl Environ Microbiol; 2016 Sep; 82(17):5259-68. PubMed ID: 27316960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-inoculation Effect of Rhizobia and Plant Growth Promoting Rhizobacteria on Common Bean Growth in a Low Phosphorus Soil.
    Korir H; Mungai NW; Thuita M; Hamba Y; Masso C
    Front Plant Sci; 2017; 8():141. PubMed ID: 28224000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase.
    Ahmad M; Zahir ZA; Asghar HN; Asghar M
    Can J Microbiol; 2011 Jul; 57(7):578-89. PubMed ID: 21770816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of β-rhizobia as new root nodulating bacteria in legumes and current status of the legume-rhizobium host specificity dogma.
    Hassen AI; Lamprecht SC; Bopape FL
    World J Microbiol Biotechnol; 2020 Feb; 36(3):40. PubMed ID: 32095903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis.
    Hao X; Taghavi S; Xie P; Orbach MJ; Alwathnani HA; Rensing C; Wei G
    Int J Phytoremediation; 2014; 16(2):179-202. PubMed ID: 24912209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inoculation and phosphorus fertilizer improve food-feed traits of grain legumes in mixed crop-livestock systems of Ethiopia.
    Belete S; Bezabih M; Abdulkadir B; Tolera A; Mekonnen K; Wolde-Meskel E
    Agric Ecosyst Environ; 2019 Jul; 279():58-64. PubMed ID: 31274941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of legume nodulation by acidic growth conditions.
    Ferguson BJ; Lin MH; Gresshoff PM
    Plant Signal Behav; 2013 Mar; 8(3):e23426. PubMed ID: 23333963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of microRNAs in the legume-Rhizobium nitrogen-fixing symbiosis.
    Hoang NT; Tóth K; Stacey G
    J Exp Bot; 2020 Mar; 71(5):1668-1680. PubMed ID: 32163588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Legumes versus rhizobia: a model for ongoing conflict in symbiosis.
    Sachs JL; Quides KW; Wendlandt CE
    New Phytol; 2018 Sep; 219(4):1199-1206. PubMed ID: 29845625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiome of Nodules and Roots of Soybean and Common Bean: Searching for Differences Associated with Contrasting Performances in Symbiotic Nitrogen Fixation.
    Bender FR; Alves LC; da Silva JFM; Ribeiro RA; Pauli G; Nogueira MA; Hungria M
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What determines the efficiency of N(2)-fixing Rhizobium-legume symbioses?
    Terpolilli JJ; Hood GA; Poole PS
    Adv Microb Physiol; 2012; 60():325-89. PubMed ID: 22633062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the Phylogeny, Nodule Function, and Biogeographic Distribution of Microsymbionts Nodulating the Orphan Kersting's Groundnut [
    Mohammed M; Jaiswal SK; Dakora FD
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30952658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen sensing in legumes.
    Murray JD; Liu CW; Chen Y; Miller AJ
    J Exp Bot; 2017 Apr; 68(8):1919-1926. PubMed ID: 27927992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology.
    Zahran HH
    J Biotechnol; 2001 Oct; 91(2-3):143-53. PubMed ID: 11566386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inoculation of new rhizobial isolates improve nutrient uptake and growth of bean (Phaseolus vulgaris) and arugula (Eruca sativa).
    de Souza EM; Bassani VL; Sperotto RA; Granada CE
    J Sci Food Agric; 2016 Aug; 96(10):3446-53. PubMed ID: 26564333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes.
    Thies JE; Singleton PW; Bohlool BB
    Appl Environ Microbiol; 1991 Jan; 57(1):19-28. PubMed ID: 16348393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent development and new insight of diversification and symbiosis specificity of legume rhizobia: mechanism and application.
    Chen WF; Wang ET; Ji ZJ; Zhang JJ
    J Appl Microbiol; 2021 Aug; 131(2):553-563. PubMed ID: 33300250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new function of white-rot fungi Ceriporia lacerata HG2011: improvement of biological nitrogen fixation of broad bean (Vicia faba).
    Yin J; Sui Z; Li Y; Yang H; Yuan L; Huang J
    Microbiol Res; 2022 Mar; 256():126939. PubMed ID: 34923239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poor Competitiveness of
    Chalasani D; Basu A; Pullabhotla SVSRN; Jorrin B; Neal AL; Poole PS; Podile AR; Tkacz A
    mBio; 2021 Aug; 12(4):e0042321. PubMed ID: 34225488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.