These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Development of Atovaquone Nanosuspension: Quality by Design Approach. Kakade P; Gite S; Patravale V Curr Drug Deliv; 2020; 17(2):112-125. PubMed ID: 31880260 [TBL] [Abstract][Full Text] [Related]
3. A quality-by-design study to develop Nifedipine nanosuspension: examining the relative impact of formulation variables, wet media milling process parameters and excipient variability on drug product quality attributes. Patel PJ; Gajera BY; Dave RH Drug Dev Ind Pharm; 2018 Dec; 44(12):1942-1952. PubMed ID: 30027778 [TBL] [Abstract][Full Text] [Related]
4. Development of an amorphous nanosuspension by sonoprecipitation-formulation and process optimization using design of experiment methodology. Gajera BY; Shah DA; Dave RH Int J Pharm; 2019 Mar; 559():348-359. PubMed ID: 30721724 [TBL] [Abstract][Full Text] [Related]
5. Preparation and Characterization of Stable Nanosuspension for Dissolution Rate Enhancement of Furosemide: A Quality by Design (QbD) Approach. Marzan AL; Tabassum R; Jahan B; Asif MH; Reza HM; Kazi M; Alshehri SM; de Matas M; Shariare MH Curr Drug Deliv; 2018; 15(5):672-685. PubMed ID: 29359667 [TBL] [Abstract][Full Text] [Related]
6. Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation. Alshweiat A; Katona G; Csóka I; Ambrus R Eur J Pharm Sci; 2018 Sep; 122():94-104. PubMed ID: 29908301 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of an aprepitant nanosuspension using hydroxypropyl chitosan to increase the bioavailability. Liu J; Li S; Ao W; Li Y; Xiao Y; Bai M Biochem Biophys Res Commun; 2022 Nov; 631():72-77. PubMed ID: 36179498 [TBL] [Abstract][Full Text] [Related]
8. Dermal flurbiprofen nanosuspensions: Optimization with design of experiment approach and in vitro evaluation. Oktay AN; Karakucuk A; Ilbasmis-Tamer S; Celebi N Eur J Pharm Sci; 2018 Sep; 122():254-263. PubMed ID: 29981401 [TBL] [Abstract][Full Text] [Related]
9. Development of a New Aprepitant Liquisolid Formulation with the Aid of Artificial Neural Networks and Genetic Programming. Barmpalexis P; Grypioti A; Eleftheriadis GK; Fatouros DG AAPS PharmSciTech; 2018 Feb; 19(2):741-752. PubMed ID: 28980185 [TBL] [Abstract][Full Text] [Related]
10. Study of Formulation and Process Variables for Optimization of Piroxicam Nanosuspension Using 3 Alhamhoom Y; Honmane SM; Hani U; Osmani RAM; Kandasamy G; Vasudevan R; Paramshetti S; R Dudhal R; K Kengar N; Charde MS Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771784 [TBL] [Abstract][Full Text] [Related]
11. Preparation, Characterization and In Vivo Assessment of Repaglinide Nanosuspension for Oral Bioavailability Improvement. Zawar LR; Bari SB Recent Pat Drug Deliv Formul; 2018; 12(3):162-169. PubMed ID: 30003863 [TBL] [Abstract][Full Text] [Related]
12. Preparation of ritonavir nanosuspensions by microfluidization using polymeric stabilizers: I. A Design of Experiment approach. Karakucuk A; Celebi N; Teksin ZS Eur J Pharm Sci; 2016 Dec; 95():111-121. PubMed ID: 27181836 [TBL] [Abstract][Full Text] [Related]
13. Application of Central Composite Design in Optimization of Valsartan Nanosuspension to Enhance its Solubility and Stability. Vuppalapati L; Cherukuri S; Neeli V; Yeragamreddy PR; Kesavan BR Curr Drug Deliv; 2016; 13(1):143-57. PubMed ID: 26205900 [TBL] [Abstract][Full Text] [Related]
14. Preparation and Characterization of Nanosuspension of Aprepitant by H96 Process. Kalvakuntla S; Deshpande M; Attari Z; Kunnatur B K Adv Pharm Bull; 2016 Mar; 6(1):83-90. PubMed ID: 27123422 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Solubility and Dissolution Rate of Lacidipine Nanosuspension: Formulation Via Antisolvent Sonoprecipitation Technique and Optimization Using Box-Behnken Design. Kassem MAA; ElMeshad AN; Fares AR AAPS PharmSciTech; 2017 May; 18(4):983-996. PubMed ID: 27506564 [TBL] [Abstract][Full Text] [Related]
16. [Preparation and characterization of icariin nanosuspension and lyophilized powder]. Hui-Rong XI; Hui-Ping MA; Ke-Ming C; Xiao-Shuan L Zhongguo Zhong Yao Za Zhi; 2020 Oct; 45(20):4902-4908. PubMed ID: 33350263 [TBL] [Abstract][Full Text] [Related]
17. Risk assessment and QbD based optimization of an Eprosartan mesylate nanosuspension: In-vitro characterization, PAMPA and in-vivo assessment. Shekhawat P; Pokharkar V Int J Pharm; 2019 Aug; 567():118415. PubMed ID: 31175989 [TBL] [Abstract][Full Text] [Related]
18. Design and Evaluation of Eudragit RS-100 Based Itraconazole Nanosuspension for Ophthalmic Application. Pawar P; Duduskar A; Waydande S Curr Drug Res Rev; 2021; 13(1):36-48. PubMed ID: 32990554 [TBL] [Abstract][Full Text] [Related]
19. Formulation and Evaluation of Isradipine Nanosuspension and Exploring its Role as a Potential Anticancer Drug by Computational Approach. Mohapatra PK; Srivastava R; Varshney KK; Babu SH Anticancer Agents Med Chem; 2022; 22(10):1984-2001. PubMed ID: 34353274 [TBL] [Abstract][Full Text] [Related]
20. Aprepitant loaded solid preconcentrated microemulsion for enhanced bioavailability: A comparison with micronized Aprepitant. Kamboj S; Sharma R; Singh K; Rana V Eur J Pharm Sci; 2015 Oct; 78():90-102. PubMed ID: 26165621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]