These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35897173)

  • 1. Investigating the roles of advection and degradation in chlorinated solvent back-diffusion from multi-layer aquitards: A novel analytical approach.
    Ding XH; Feng SJ
    J Hazard Mater; 2022 Sep; 437():129410. PubMed ID: 35897173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contaminant back-diffusion from layered aquitards subjected to barrier-controlled source zones.
    Ding XH; Feng SJ
    Water Res; 2023 Jun; 238():120021. PubMed ID: 37146396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forward and back diffusion of reactive contaminants through multi-layer low permeability sediments.
    Ding XH; Feng SJ; Zheng QT
    Water Res; 2022 Aug; 222():118925. PubMed ID: 35932709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing aquitard integrity in a complex aquifer - aquitard system contaminated by chlorinated hydrocarbons.
    Filippini M; Parker BL; Dinelli E; Wanner P; Chapman SW; Gargini A
    Water Res; 2020 Mar; 171():115388. PubMed ID: 31877474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do CSIA data from aquifers inform on natural degradation of chlorinated ethenes in aquitards?
    Thouement HAA; Kuder T; Heimovaara TJ; van Breukelen BM
    J Contam Hydrol; 2019 Oct; 226():103520. PubMed ID: 31377464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotic and abiotic reductive dechlorination of chloroethenes in aquitards.
    Puigserver D; Herrero J; Nogueras X; Cortés A; Parker BL; Playà E; Carmona JM
    Sci Total Environ; 2022 Apr; 816():151532. PubMed ID: 34752872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the effect of chlorinated hydrocarbon degradation in aquitards on plume persistence due to back-diffusion.
    Wanner P; Parker BL; Hunkeler D
    Sci Total Environ; 2018 Aug; 633():1602-1612. PubMed ID: 29758910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of matrix diffusion on the migration of groundwater plumes for Perfluoroalkyl acids (PFAAs) and other non-degradable compounds.
    Farhat SK; Newell CJ; Lee SA; Looney BB; Falta RW
    J Contam Hydrol; 2022 May; 247():103987. PubMed ID: 35286952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural attenuation of pools and plumes of carbon tetrachloride and chloroform in the transition zone to bottom aquitards and the microorganisms involved in their degradation.
    Puigserver D; Herrero J; Parker BL; Carmona JM
    Sci Total Environ; 2020 Apr; 712():135679. PubMed ID: 31785913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A controlled field experiment on groundwater contamination by a multicomponent DNAPL: creation of the emplaced-source and overview of dissolved plume development.
    Rivett MO; Feenstra S; Cherry JA
    J Contam Hydrol; 2001 May; 49(1-2):111-49. PubMed ID: 11351512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solute source depletion control of forward and back diffusion through low-permeability zones.
    Yang M; Annable MD; Jawitz JW
    J Contam Hydrol; 2016 Oct; 193():54-62. PubMed ID: 27636989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of thin aquitards on two-dimensional solute transport in an aquifer.
    Rezaei A; Zhan H; Zare M
    J Contam Hydrol; 2013 Sep; 152():117-36. PubMed ID: 23906486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of chlorohydrocarbon degradation pathways in aquitards using dual element compound-specific isotope measurements in aquifers.
    Lincker M; Lagneau V; Guillon S; Wanner P
    Chemosphere; 2022 Sep; 303(Pt 2):135131. PubMed ID: 35640688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: modeling of spreading and degradation.
    Zuurbier KG; Hartog N; Valstar J; Post VE; van Breukelen BM
    J Contam Hydrol; 2013 Apr; 147():1-13. PubMed ID: 23435174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application.
    Yang J; Meng L; Guo L
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5051-5062. PubMed ID: 28819708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of matrix diffusion on 1,4-dioxane persistence at contaminated groundwater sites.
    Adamson DT; de Blanc PC; Farhat SK; Newell CJ
    Sci Total Environ; 2016 Aug; 562():98-107. PubMed ID: 27096631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The legacy of chlorinated solvents in the Birmingham aquifer, UK: observations spanning three decades and the challenge of future urban groundwater development.
    Rivett MO; Turner RJ; Glibbery Née Murcott P; Cuthbert MO
    J Contam Hydrol; 2012 Oct; 140-141():107-23. PubMed ID: 23022878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones.
    Seyedabbasi MA; Newell CJ; Adamson DT; Sale TC
    J Contam Hydrol; 2012 Jun; 134-135():69-81. PubMed ID: 22591740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A controlled field experiment on groundwater contamination by a multicomponent DNAPL: dissolved-plume retardation.
    Rivett MO; Allen-King RM
    J Contam Hydrol; 2003 Oct; 66(1-2):117-46. PubMed ID: 14516944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobilization pilot test of PCE sources in the transition zone to aquitards by combining mZVI and biostimulation with lactic acid.
    Puigserver D; Herrero J; Carmona JM
    Sci Total Environ; 2023 Jun; 877():162751. PubMed ID: 36921871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.