These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35897300)

  • 21. The first data on species diversity of leeches (Hirudinea) in the Irtysh River Basin, East Kazakhstan.
    Kaygorodova IA; Fedorova LI
    Zootaxa; 2016 Jul; 4144(2):287-90. PubMed ID: 27470855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Industrial water pollution and transboundary eco-compensation: analyzing the case of Songhua River Basin, China.
    Wanhong L; Fang L; Fan W; Maiqi D; Tiansen L
    Environ Sci Pollut Res Int; 2020 Oct; 27(28):34746-34759. PubMed ID: 31848946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Applying the input-output method to account for water footprint and virtual water trade in the Haihe River basin in China.
    Zhao X; Yang H; Yang Z; Chen B; Qin Y
    Environ Sci Technol; 2010 Dec; 44(23):9150-6. PubMed ID: 20945890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sustainable water quality management framework and a strategy planning system for a river basin.
    Chen CH; Liu WL; Leu HG
    Environ Manage; 2006 Dec; 38(6):952-73. PubMed ID: 16990981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China.
    Zhang Y; Xia J; Chen J; Zhang M
    Environ Monit Assess; 2011 Feb; 173(1-4):409-30. PubMed ID: 20237841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A BPNN-based ecologically extended input-output model for virtual water metabolism network management of Kazakhstan.
    Ma Z; Liu J; Li Y; Zhang H; Fang L
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):43752-43767. PubMed ID: 36662429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Managing hydroclimatic risks in federal rivers: a diagnostic assessment.
    Garrick D; De Stefano L; Fung F; Pittock J; Schlager E; New M; Connell D
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2002):20120415. PubMed ID: 24080624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of the Grain for Green Project on water resources and ecological water stress in the Yanhe River Basin.
    Han Y; Xia F; Huang H; Mu W; Jia D
    PLoS One; 2022; 17(6):e0259611. PubMed ID: 35709143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pollution exacerbates interregional flows of virtual scarce water driven by energy demand in China.
    Li H; Liang Y; Chen Q; Liang S; Jetashree ; Yang Z
    Water Res; 2022 Sep; 223():118980. PubMed ID: 35987035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial distribution and controlling factors of surface water stable isotope values (δ
    Wu H; Wu J; Song F; Abuduwaili J; Saparov AS; Chen X; Shen B
    Sci Total Environ; 2019 Aug; 678():53-61. PubMed ID: 31075603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How far are we from possible ideal virtual water transfer? Evidence from assessing vulnerability of global virtual water trade.
    Du Y; Fang K; Zhao D; Liu Q; Xu Z; Peng J
    Sci Total Environ; 2022 Jul; 828():154493. PubMed ID: 35283128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial characteristics and influencing factors of river pollution in China.
    Wang E; Li Q; Hu H; Peng F; Zhang P; Li J
    Water Environ Res; 2019 Apr; 91(4):351-363. PubMed ID: 30698906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrochemical characteristics and irrigation suitability of surface water in the Syr Darya River, Kazakhstan.
    Zhang W; Ma L; Abuduwaili J; Ge Y; Issanova G; Saparov G
    Environ Monit Assess; 2019 Aug; 191(9):572. PubMed ID: 31420782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated modelling to assess the impacts of water stress in a transboundary river basin: Bridging local-scale water resource operations to a river basin economy.
    Eamen L; Brouwer R; Razavi S
    Sci Total Environ; 2021 Dec; 800():149543. PubMed ID: 34392228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of the effects of human activity and natural condition on the outflow of Syr Darya River: A stepwise-cluster factorial analysis method.
    Zhai XB; Li YP; Liu YR; Huang GH
    Environ Res; 2021 Mar; 194():110634. PubMed ID: 33359456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Caddisfly Assemblages in Metal Contaminated Rivers of the Tikhaya Basin, East Kazakhstan.
    Yanygina LV; Evseeva AA
    Bull Environ Contam Toxicol; 2019 Mar; 102(3):316-322. PubMed ID: 30726511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of long-term strategies of riparian countries in transboundary river basins.
    Mirzaei-Nodoushan F; Bozorg-Haddad O; Singh VP; Loáiciga HA
    Sci Rep; 2021 Oct; 11(1):20199. PubMed ID: 34642386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrochemical evaluation of the influences of mining activities on river water chemistry in central northern Mongolia.
    Batsaikhan B; Kwon JS; Kim KH; Lee YJ; Lee JH; Badarch M; Yun ST
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):2019-2034. PubMed ID: 27807785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The "Gravity" for global virtual water flows: From quantity and quality perspectives.
    Hou S; Xu M; Qu S
    J Environ Manage; 2023 Mar; 329():116984. PubMed ID: 36563441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using the WEI+ index to evaluate water scarcity at highly regulated river basins with conjunctive uses of surface and groundwater resources.
    Sondermann MN; Proença de Oliveira R
    Sci Total Environ; 2022 Aug; 836():155754. PubMed ID: 35526621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.