These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 35897546)
1. Experimental Study on Durability Degradation of Geopolymer-Stabilized Soil under Sulfate Erosion. Wang G; Chen S; Xia M; Zhong W; Han X; Luo B; Sabri MMS; Huang J Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897546 [TBL] [Abstract][Full Text] [Related]
2. Experimental Investigation of Unconfined Compression Strength and Microstructure Characteristics of Slag and Fly Ash-Based Geopolymer Stabilized Riverside Soft Soil. Luo Z; Luo B; Zhao Y; Li X; Su Y; Huang H; Wang Q Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054713 [TBL] [Abstract][Full Text] [Related]
3. Influence of Multiple Factors on the Workability and Early Strength Development of Alkali-Activated Fly Ash and Slag-Based Geopolymer-Stabilized Soil. Li X; Zhao Y; Hu Y; Wang G; Xia M; Luo B; Luo Z Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35408014 [TBL] [Abstract][Full Text] [Related]
4. Developing interpretable machine learning-Shapley additive explanations model for unconfined compressive strength of cohesive soils stabilized with geopolymer. Ngo AQ; Nguyen LQ; Tran VQ PLoS One; 2023; 18(6):e0286950. PubMed ID: 37289821 [TBL] [Abstract][Full Text] [Related]
5. Potential of Soil Stabilization Using Ground Granulated Blast Furnace Slag (GGBFS) and Fly Ash via Geopolymerization Method: A Review. Abdila SR; Abdullah MMAB; Ahmad R; Burduhos Nergis DD; Rahim SZA; Omar MF; Sandu AV; Vizureanu P; Syafwandi Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009521 [TBL] [Abstract][Full Text] [Related]
6. Waste solidification/stabilization of lead-zinc slag by utilizing fly ash based geopolymers. Li S; Huang X; Muhammad F; Yu L; Xia M; Zhao J; Jiao B; Shiau Y; Li D RSC Adv; 2018 Sep; 8(57):32956-32965. PubMed ID: 35547705 [TBL] [Abstract][Full Text] [Related]
7. Research on Compressive and Flexural Properties of Coal Gangue-Slag Geopolymer under Wetting-Drying Cycles and Analysis of Micro-Mechanism. Yang X; Zhang Y; Li Z; Wang M Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883662 [TBL] [Abstract][Full Text] [Related]
8. Applicability of waste foundry sand stabilization by fly ash geopolymer under ambient curing conditions. Khalaf AA; Kopecskó K; Modhfar S Heliyon; 2024 Mar; 10(6):e27784. PubMed ID: 38509931 [TBL] [Abstract][Full Text] [Related]
9. Setting Time, Microstructure, and Durability Properties of Low Calcium Fly Ash/Slag Geopolymer: A Review. Aldawsari S; Kampmann R; Harnisch J; Rohde C Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160820 [TBL] [Abstract][Full Text] [Related]
10. Designing low-carbon fly ash based geopolymer with red mud and blast furnace slag wastes: Performance, microstructure and mechanism. Li Z; Zhang J; Lei Z; Gao M; Sun J; Tong L; Chen S; Wang Y J Environ Manage; 2024 Mar; 354():120362. PubMed ID: 38364543 [TBL] [Abstract][Full Text] [Related]
11. Strength and microscopic mechanism analysis of CFBCA-based geopolymer-Pisha sandstone cement composite soil. Zhu J; Li X Environ Sci Pollut Res Int; 2022 Sep; 29(43):65197-65210. PubMed ID: 35486273 [TBL] [Abstract][Full Text] [Related]
12. Modification Effect of Ca(OH) Lv Y; Qiao J; Han W; Pan B; Jin X; Peng H Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984186 [TBL] [Abstract][Full Text] [Related]
13. Resistance and durability of fly ash based geopolymer for heavy metal immobilization: properties and mechanism. Ren X; Wang F; He X; Hu X RSC Adv; 2024 Apr; 14(18):12580-12592. PubMed ID: 38638817 [TBL] [Abstract][Full Text] [Related]
14. Strength and Microstructure Characteristics of Blended Fly Ash and Ground Granulated Blast Furnace Slag Geopolymer Mortars with Na and K Silicate Solution. Sitarz M; Castro-Gomes J; Hager I Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009357 [TBL] [Abstract][Full Text] [Related]
15. Evaluation on the Mechanical Properties of Ground Granulated Blast Slag (GGBS) and Fly Ash Stabilized Soil via Geopolymer Process. Abdila SR; Abdullah MMAB; Ahmad R; Rahim SZA; Rychta M; Wnuk I; Nabiałek M; Muskalski K; Tahir MFM; Syafwandi ; Isradi M; Gucwa M Materials (Basel); 2021 May; 14(11):. PubMed ID: 34073169 [TBL] [Abstract][Full Text] [Related]
16. Sulfate Resistance of Recycled Aggregate Concrete with GGBS and Fly Ash-Based Geopolymer. Xie J; Zhao J; Wang J; Wang C; Huang P; Fang C Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31014035 [TBL] [Abstract][Full Text] [Related]
17. Mechanical and Durability Analysis of Fly Ash Based Geopolymer with Various Compositions for Rigid Pavement Applications. Tahir MFM; Abdullah MMAB; Rahim SZA; Mohd Hasan MR; Sandu AV; Vizureanu P; Ghazali CMR; Kadir AA Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629485 [TBL] [Abstract][Full Text] [Related]
18. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. Phummiphan I; Horpibulsuk S; Rachan R; Arulrajah A; Shen SL; Chindaprasirt P J Hazard Mater; 2018 Jan; 341():257-267. PubMed ID: 28797942 [TBL] [Abstract][Full Text] [Related]
19. Influence of Residue Soil on the Properties of Fly Ash-Slag-Based Geopolymer Materials for 3D Printing. Zhou Z; Geng J; Jin C; Liu G; Xia Z Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930361 [TBL] [Abstract][Full Text] [Related]
20. Performances of Using Geopolymers Made with Various Stabilizers for Deep Mixing. Canakci H; Güllü H; Alhashemy A Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31405008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]