These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 358976)
1. Control of downstream amplification in the ilvEDA operon in isoleucyl-, valyl-, and leucyl-tRNA synthetase mutants of Escherichia coli K-12. Whittaker JJ; Jackson JH Biochem Biophys Res Commun; 1978 Jul; 83(1):226-33. PubMed ID: 358976 [No Abstract] [Full Text] [Related]
2. Synthesis of the isoleucyl- and valyl-tRNA synthetases and the isoleucine-valine biosynthetic enzymes in a threonine deaminase regulatory mutant of Escherichia coli K-12. Singer PA; Levinthal M; Williams LS J Mol Biol; 1984 May; 175(1):39-55. PubMed ID: 6374157 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and activities of branched-chain aminoacyl-tRNA synthetases in threonine deaminase mutants of Escherichia coli. Williams AL; Whitfield SM; Williams LS J Bacteriol; 1978 Apr; 134(1):92-9. PubMed ID: 348689 [TBL] [Abstract][Full Text] [Related]
4. [Regulation of the biosynthesis of branched aminoacyl tRNA synthetases in Bacillus cereus T]. Raimond J Biochimie; 1980; 62(10):727-32. PubMed ID: 6778511 [TBL] [Abstract][Full Text] [Related]
5. The valyl-tRNA synthetase from Bacillus stearothermophilus has considerable sequence homology with the isoleucyl-tRNA synthetase from Escherichia coli. Borgford TJ; Brand NJ; Gray TE; Fersht AR Biochemistry; 1987 May; 26(9):2480-6. PubMed ID: 3300774 [TBL] [Abstract][Full Text] [Related]
6. Role of valyl-tRNA in the regulation of the biosynthesis of valyl-, isoleucyl-, and leucyl-tRNA synthetases in yeast. Ehresmann B; Imbault P; Weil JH Biochimie; 1974; 56(10):1341-5. PubMed ID: 4619555 [No Abstract] [Full Text] [Related]
7. Improvement of substrate recognition in branched-chain aminoacyl-tRNA synthetases from Escherichia coli under conditions of pyrophosphate amplification. Nakatsuka-Mori T; Sato D; Aoki H J Biosci Bioeng; 2022 May; 133(5):436-443. PubMed ID: 35216933 [TBL] [Abstract][Full Text] [Related]
8. Valyl-tRNA synthetase gene of Escherichia coli K12. Primary structure and homology within a family of aminoacyl-TRNA synthetases. Heck JD; Hatfield GW J Biol Chem; 1988 Jan; 263(2):868-77. PubMed ID: 3275660 [TBL] [Abstract][Full Text] [Related]
9. Homology of yeast mitochondrial leucyl-tRNA synthetase and isoleucyl- and methionyl-tRNA synthetases of Escherichia coli. Tzagoloff A; Akai A; Kurkulos M; Repetto B J Biol Chem; 1988 Jan; 263(2):850-6. PubMed ID: 2826465 [TBL] [Abstract][Full Text] [Related]
10. Mutations in the structural genes of CHO cell histidyl-, valyl-, and leucyl-tRNA synthetases. Ashman CR Somatic Cell Genet; 1978 May; 4(3):299-312. PubMed ID: 694722 [TBL] [Abstract][Full Text] [Related]
11. Reversion of the effects of a threonine deaminase regulatory mutant by a mutation in ilvH in Escherichia coli K-12. Singer PA; Levinthal M; Williams LS Biochem Biophys Res Commun; 1984 Jan; 118(1):270-7. PubMed ID: 6365098 [TBL] [Abstract][Full Text] [Related]
12. Molecular cloning and characterization of the gene for Escherichia coli valyl-tRNA synthetase. Skogman SG; Nilsson J Gene; 1984 Oct; 30(1-3):219-26. PubMed ID: 6392024 [TBL] [Abstract][Full Text] [Related]
13. Role of leucyl-tRNA synthetase in regulation of branched-chain amino-acid transport. Quay SC; Kline EL; Oxender DL Proc Natl Acad Sci U S A; 1975 Oct; 72(10):3921-4. PubMed ID: 1105569 [TBL] [Abstract][Full Text] [Related]
14. Structure of the yeast valyl-tRNA synthetase gene (VASI) and the homology of its translated amino acid sequence with Escherichia coli isoleucyl-tRNA synthetase. Jordana X; Chatton B; Paz-Weisshaar M; Buhler JM; Cramer F; Ebel JP; Fasiolo F J Biol Chem; 1987 May; 262(15):7189-94. PubMed ID: 3294828 [TBL] [Abstract][Full Text] [Related]
15. Evidence for cAMP-mediated control of isoleucyl-tRNA synthetase formation in Escherichia coli K-12. Williams AL; Barnett RS Arch Microbiol; 1985 Jul; 142(2):190-3. PubMed ID: 2994589 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of discrimination of isoleucyl-tRNA synthetase against nonproteinogenic α-aminobutyrate and its fluorinated analogues. Zivkovic I; Moschner J; Koksch B; Gruic-Sovulj I FEBS J; 2020 Feb; 287(4):800-813. PubMed ID: 31486189 [TBL] [Abstract][Full Text] [Related]
17. Modification of aminoacyl-tRNA synthetases with pyridoxal-5'-phosphate. Identification of the labeled amino acid residues. Kalogerakos T; Hountondji C; Berne PF; Dukta S; Blanquet S Biochimie; 1994; 76(1):33-44. PubMed ID: 8031903 [TBL] [Abstract][Full Text] [Related]
18. Derepression of synthesis of the aminoacyl-transfer ribonucleic acid synthetases for the branched-chain amino acids of Escherichia coli. McGinnis E; Williams AC; Williams LS J Bacteriol; 1974 Aug; 119(2):554-9. PubMed ID: 4604302 [TBL] [Abstract][Full Text] [Related]
19. Chloroplastic and cytoplasmic valyl- and leucyl-tRNA synthetases from Euglena gracilis. Comparative study of their structural properties. Colas B; Imbault P; Sarantoglou V; Boulanger Y; Weil JH Biochim Biophys Acta; 1982 Apr; 697(1):71-7. PubMed ID: 6805515 [TBL] [Abstract][Full Text] [Related]
20. Amino acid selectivity in the aminoacylation of coenzyme A and RNA minihelices by aminoacyl-tRNA synthetases. Jakubowski H J Biol Chem; 2000 Nov; 275(45):34845-8. PubMed ID: 10995737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]