These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 35897972)
21. Quantitative Determination of Volatile Wang C; Duan L; Yang B; Ye Z; Yu J; Liu J; Zheng X; Yang Q; Jing G; Liu W; Li W; Liu W J Agric Food Chem; 2024 Oct; 72(43):24101-24108. PubMed ID: 39417298 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of a new miniaturized ion mobility spectrometer and its coupling to fast gas chromatography multicapillary columns. Aguilera-Herrador E; Cárdenas S; Ruzsanyi V; Sielemann S; Valcárcel M J Chromatogr A; 2008 Dec; 1214(1-2):143-50. PubMed ID: 18986656 [TBL] [Abstract][Full Text] [Related]
23. Toward Compact High-Performance Ion Mobility Spectrometers: Ion Gating in Ion Mobility Spectrometry. Bohnhorst A; Kirk AT; Zimmermann S Anal Chem; 2021 Apr; 93(15):6062-6070. PubMed ID: 33825452 [TBL] [Abstract][Full Text] [Related]
24. Monitoring of selected skin- and breath-borne volatile organic compounds emitted from the human body using gas chromatography ion mobility spectrometry (GC-IMS). Mochalski P; Wiesenhofer H; Allers M; Zimmermann S; Güntner AT; Pineau NJ; Lederer W; Agapiou A; Mayhew CA; Ruzsanyi V J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Feb; 1076():29-34. PubMed ID: 29396365 [TBL] [Abstract][Full Text] [Related]
25. [Photoionization ion mobility spectrometry (UV-IMS) for the isomeric volatile organic compounds]. Li H; Niu WQ; Wang HM; Huang CQ; Jiang HH; Chu YN Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jan; 32(1):29-32. PubMed ID: 22497120 [TBL] [Abstract][Full Text] [Related]
26. Near real-time VOCs analysis using an aspiration ion mobility spectrometer. Mochalski P; Rudnicka J; Agapiou A; Statheropoulos M; Amann A; Buszewski B J Breath Res; 2013 Jun; 7(2):026002. PubMed ID: 23470292 [TBL] [Abstract][Full Text] [Related]
27. Miniaturized micromachined gas chromatography with universal and selective detectors for targeted volatile compounds analysis. Gras R; Luong J; Shellie RA J Chromatogr A; 2018 Oct; 1573():151-155. PubMed ID: 30217384 [TBL] [Abstract][Full Text] [Related]
28. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry. Rodríguez-Maecker R; Vyhmeister E; Meisen S; Rosales Martinez A; Kuklya A; Telgheder U Anal Bioanal Chem; 2017 Nov; 409(28):6595-6603. PubMed ID: 28932891 [TBL] [Abstract][Full Text] [Related]
29. Characterization of a new mobility separation tool: HRIMS as differential mobility analyzer. Bouza M; López-Vidal S; Pisonero J; Bordel N; Pereiro R; Sanz-Medel A Talanta; 2014 Dec; 130():400-7. PubMed ID: 25159427 [TBL] [Abstract][Full Text] [Related]
30. Fast Orthogonal Separation by Superposition of Time of Flight and Field Asymmetric Ion Mobility Spectrometry. Bohnhorst A; Kirk AT; Berger M; Zimmermann S Anal Chem; 2018 Jan; 90(2):1114-1121. PubMed ID: 29271643 [TBL] [Abstract][Full Text] [Related]
31. Ion mobility spectrometer with orthogonal X-Ray source for increased sensitivity. Bunert E; Reinecke T; Kirk AT; Bohnhorst A; Zimmermann S Talanta; 2018 Aug; 185():537-541. PubMed ID: 29759238 [TBL] [Abstract][Full Text] [Related]
32. Quantitative detection of benzene in toluene- and xylene-rich atmospheres using high-kinetic-energy ion mobility spectrometry (IMS). Langejuergen J; Allers M; Oermann J; Kirk A; Zimmermann S Anal Chem; 2014 Dec; 86(23):11841-6. PubMed ID: 25360539 [TBL] [Abstract][Full Text] [Related]
33. Separation of Isotopologues in Ultra-High-Resolution Ion Mobility Spectrometry. Kirk AT; Raddatz CR; Zimmermann S Anal Chem; 2017 Feb; 89(3):1509-1515. PubMed ID: 28208278 [TBL] [Abstract][Full Text] [Related]
34. Development of a New Ion Mobility (Quadrupole) Time-of-Flight Mass Spectrometer. Ibrahim YM; Baker ES; Danielson WF; Norheim RV; Prior DC; Anderson GA; Belov ME; Smith RD Int J Mass Spectrom; 2015 Feb; 377():655-662. PubMed ID: 26185483 [TBL] [Abstract][Full Text] [Related]
35. High kinetic energy ion mobility spectrometer: quantitative analysis of gas mixtures with ion mobility spectrometry. Langejuergen J; Allers M; Oermann J; Kirk A; Zimmermann S Anal Chem; 2014 Jul; 86(14):7023-32. PubMed ID: 24937741 [TBL] [Abstract][Full Text] [Related]
36. A gated atmospheric pressure drift tube ion mobility spectrometer-time-of-flight mass spectrometer. Heptner A; Reinecke T; Langejuergen J; Zimmermann S J Chromatogr A; 2014 Aug; 1356():241-8. PubMed ID: 25015244 [TBL] [Abstract][Full Text] [Related]
37. Performance, resolving power, and radial ion distributions of a prototype nanoelectrospray ionization resistive glass atmospheric pressure ion mobility spectrometer. Kwasnik M; Fuhrer K; Gonin M; Barbeau K; Fernandez FM Anal Chem; 2007 Oct; 79(20):7782-91. PubMed ID: 17854161 [TBL] [Abstract][Full Text] [Related]
38. A comparative study between different alternatives to prepare gaseous standards for calibrating UV-Ion Mobility Spectrometers. Criado-García L; Garrido-Delgado R; Arce L; Valcárcel M Talanta; 2013 Jul; 111():111-8. PubMed ID: 23622533 [TBL] [Abstract][Full Text] [Related]
39. Product ion distributions for the reactions of NO(+) with some physiologically significant volatile organosulfur and organoselenium compounds obtained using a selective reagent ionization time-of-flight mass spectrometer. Mochalski P; Unterkofler K; Španěl P; Smith D; Amann A Rapid Commun Mass Spectrom; 2014 Aug; 28(15):1683-90. PubMed ID: 24975248 [TBL] [Abstract][Full Text] [Related]
40. Determination of the transfer function of an atmospheric pressure drift tube ion mobility spectrometer for nanoparticle measurements. Buckley DT; Hogan CJ Analyst; 2017 May; 142(10):1800-1812. PubMed ID: 28462969 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]