These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35898008)

  • 21. Hybrid indoor localization scheme with image sensor-based visible light positioning and pedestrian dead reckoning.
    Huang H; Lin B; Feng L; Lv H
    Appl Opt; 2019 Apr; 58(12):3214-3221. PubMed ID: 31044797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Indoor Positioning Method for Smartphones Using Landmarks and PDR.
    Wang X; Jiang M; Guo Z; Hu N; Sun Z; Liu J
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-Cost Indoor Positioning Application Based on Map Assistance and Mobile Phone Sensors.
    Li YS; Ning FS
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fusion of WiFi, smartphone sensors and landmarks using the Kalman filter for indoor localization.
    Chen Z; Zou H; Jiang H; Zhu Q; Soh YC; Xie L
    Sensors (Basel); 2015 Jan; 15(1):715-32. PubMed ID: 25569750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization.
    Chen G; Meng X; Wang Y; Zhang Y; Tian P; Yang H
    Sensors (Basel); 2015 Sep; 15(9):24595-614. PubMed ID: 26404314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heading Estimation for Pedestrian Dead Reckoning Based on Robust Adaptive Kalman Filtering.
    Wu D; Xia L; Geng J
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29921813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wi-Fi/MARG Integration for Indoor Pedestrian Localization.
    Tian Z; Jin Y; Zhou M; Wu Z; Li Z
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Low-Cost Foot-Placed UWB and IMU Fusion-Based Indoor Pedestrian Tracking System for IoT Applications.
    Naheem K; Kim MS
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Image-Based Localization Aided Indoor Pedestrian Trajectory Estimation Using Smartphones.
    Zhou Y; Zheng X; Chen R; Xiong H; Guo S
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unsupervised Indoor Localization Based on Smartphone Sensors, iBeacon and Wi-Fi.
    Chen J; Zhang Y; Xue W
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29710808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Improved Pedestrian Ttracking Method Based on Wi-Fi Fingerprinting and Pedestrian Dead Reckoning.
    Feng B; Tang W; Guo G; Jia X
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining a Modified Particle Filter Method and Indoor Magnetic Fingerprint Map to Assist Pedestrian Dead Reckoning for Indoor Positioning and Navigation.
    Ning FS; Chen YC
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Practical and Accurate Indoor Localization System Using Deep Learning.
    Yoon J; Kim S
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic, Acceleration Fields and Gyroscope Quaternion (MAGYQ)-based attitude estimation with smartphone sensors for indoor pedestrian navigation.
    Renaudin V; Combettes C
    Sensors (Basel); 2014 Dec; 14(12):22864-90. PubMed ID: 25474379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic-Map-Matching-Aided Pedestrian Navigation Using Outlier Mitigation Based on Multiple Sensors and Roughness Weighting.
    Kim YH; Choi MJ; Kim EJ; Song JW
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31684139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving inertial Pedestrian Dead-Reckoning by detecting unmodified switched-on lamps in buildings.
    Jiménez AR; Zampella F; Seco F
    Sensors (Basel); 2014 Jan; 14(1):731-69. PubMed ID: 24394599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Hybrid Indoor Localization and Navigation System with Map Matching for Pedestrians Using Smartphones.
    Tian Q; Salcic Z; Wang KI; Pan Y
    Sensors (Basel); 2015 Dec; 15(12):30759-83. PubMed ID: 26690170
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Enhanced Pedestrian Visual-Inertial SLAM System Aided with Vanishing Point in Indoor Environments.
    Chai W; Li C; Zhang M; Sun Z; Yuan H; Lin F; Li Q
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pedestrian Dead Reckoning-Assisted Visual Inertial Odometry Integrity Monitoring.
    Wang Y; Peng A; Lin Z; Zheng L; Zheng H
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31861161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Performance Analysis of the Map-Aided Fuzzy Decision Tree Based on the Pedestrian Dead Reckoning Algorithm in an Indoor Environment.
    Chiang KW; Liao JK; Tsai GJ; Chang HW
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26729114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.