These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35898042)

  • 1. Ensemble Capsule Network with an Attention Mechanism for the Fault Diagnosis of Bearings from Imbalanced Data Samples.
    Xu Z; Lee CKM; Lv Y; Chan J
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bearing Fault Diagnosis Using Piecewise Aggregate Approximation and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise.
    Hu L; Wang L; Chen Y; Hu N; Jiang Y
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fault Feature Extraction Method for Rolling Bearings Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Variational Mode Decomposition.
    Wang L; Li H; Xi T; Wei S
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligent Rolling Bearing Fault Diagnosis Method Using Symmetrized Dot Pattern Images and CBAM-DRN.
    Cui W; Meng G; Gou T; Wang A; Xiao R; Zhang X
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fault diagnosis method of rolling bearings based on adaptive modified CEEMD and 1DCNN model.
    Gao S; Li T; Zhang Y; Pei Z
    ISA Trans; 2023 Sep; 140():309-330. PubMed ID: 37353365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Fault Detection Method for Rolling Bearings Based on Non-Stationary Vibration Signature Analysis.
    Zhen D; Guo J; Xu Y; Zhang H; Gu F
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved complementary ensemble empirical mode decomposition with adaptive noise and its application to rolling element bearing fault diagnosis.
    Cheng Y; Wang Z; Chen B; Zhang W; Huang G
    ISA Trans; 2019 Aug; 91():218-234. PubMed ID: 30738582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Compound fault diagnosis for rolling bearings method based on blind source separation and ensemble empirical mode decomposition.
    Wang H; Li R; Tang G; Yuan H; Zhao Q; Cao X
    PLoS One; 2014; 9(10):e109166. PubMed ID: 25289644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fault Diagnosis for Rolling Bearings Using Optimized Variational Mode Decomposition and Resonance Demodulation.
    Zhang C; Wang Y; Deng W
    Entropy (Basel); 2020 Jul; 22(7):. PubMed ID: 33286510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Fault Diagnosis Method of Rolling Bearing Based on Integrated Vision Transformer Model.
    Tang X; Xu Z; Wang Z
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convolutional Neural Network with Attention Mechanism and Visual Vibration Signal Analysis for Bearing Fault Diagnosis.
    Zhang Q; Wei X; Wang Y; Hou C
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Fault Diagnosis of Rolling Bearings Is Conducted by Employing a Dual-Branch Convolutional Capsule Neural Network.
    Lu W; Liu J; Lin F
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-fault detection of rolling element bearings under harsh working condition using IMF-based adaptive envelope order analysis.
    Zhao M; Lin J; Xu X; Li X
    Sensors (Basel); 2014 Oct; 14(11):20320-46. PubMed ID: 25353982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset.
    Tang H; Gao S; Wang L; Li X; Li B; Pang S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network.
    Li H; Huang J; Ji S
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fault Diagnosis Method for Rolling Mill Multi Row Bearings Based on AMVMD-MC1DCNN under Unbalanced Dataset.
    Zhao C; Sun J; Lin S; Peng Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fault Feature Extraction and Diagnosis of Rolling Bearings Based on Enhanced Complementary Empirical Mode Decomposition with Adaptive Noise and Statistical Time-Domain Features.
    Zhan L; Ma F; Zhang J; Li C; Li Z; Wang T
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise Eliminated Ensemble Empirical Mode Decomposition Scalogram Analysis for Rotating Machinery Fault Diagnosis.
    Faysal A; Ngui WK; Lim MH; Leong MS
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Health Degradation Monitoring and Early Fault Diagnosis of a Rolling Bearing Based on CEEMDAN and Improved MMSE.
    Lv Y; Yuan R; Wang T; Li H; Song G
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29904002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intelligent fault diagnosis of rolling bearings under varying operating conditions based on domain-adversarial neural network and attention mechanism.
    Wu H; Li J; Zhang Q; Tao J; Meng Z
    ISA Trans; 2022 Nov; 130():477-489. PubMed ID: 35491253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.