These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 35898069)

  • 1. UNetGE: A U-Net-Based Software at Automatic Grain Extraction for Image Analysis of the Grain Size and Shape Characteristics.
    Zeng L; Li T; Wang X; Chen L; Zeng P; Herrin JS
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction and parametrization of grain boundary networks in glacier ice, using a dedicated method of automatic image analysis.
    Binder T; Garbe CS; Wagenbach D; Freitag J; Kipfstuhl S
    J Microsc; 2013 May; 250(2):130-141. PubMed ID: 23573838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Counting Grains on the Rice Panicle Based on Deep Learning Method.
    Deng R; Tao M; Huang X; Bangura K; Jiang Q; Jiang Y; Qi L
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33406615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of Rice Grain Dimensions and Chalkiness, and Rice Grain Elongation Using Image Analysis.
    Santos MV; Cuevas RPO; Sreenivasulu N; Molina L
    Methods Mol Biol; 2019; 1892():99-108. PubMed ID: 30397802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cereal grain 3D point cloud analysis method for shape extraction and filled/unfilled grain identification based on structured light imaging.
    Qin Z; Zhang Z; Hua X; Yang W; Liang X; Zhai R; Huang C
    Sci Rep; 2022 Feb; 12(1):3145. PubMed ID: 35210561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on a rapid identification method for counting universal grain crops.
    Zhang J; Liu S; Wu W; Zhong X; Liu T
    PLoS One; 2022; 17(9):e0273785. PubMed ID: 36103478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiautomatic image analysis for grain counting in in situ hybridization experiments.
    Mize RR; Thouron C; Lucas L; Harlan R
    Neuroimage; 1994 Jun; 1(3):163-72. PubMed ID: 9343567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Study on the Failure Behavior of Sand Grain Contacts with Hertz Modeling, Image Processing, and Statistical Analysis.
    Li S; Kasyap SS; Senetakis K
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully automatic segmentation on prostate MR images based on cascaded fully convolution network.
    Zhu Y; Wei R; Gao G; Ding L; Zhang X; Wang X; Zhang J
    J Magn Reson Imaging; 2019 Apr; 49(4):1149-1156. PubMed ID: 30350434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Improved U-Net Image Segmentation Method and Its Application for Metallic Grain Size Statistics.
    Shi P; Duan M; Yang L; Feng W; Ding L; Jiang L
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology.
    Sharma H; Zerbe N; Klempert I; Hellwich O; Hufnagl P
    Comput Med Imaging Graph; 2017 Nov; 61():2-13. PubMed ID: 28676295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-learning-based direct inversion for material decomposition.
    Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S
    Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Grain Boundary Detection for Bright-Field Transmission Electron Microscopy Images via U-Net.
    Patrick MJ; Eckstein JK; Lopez JR; Toderas S; Asher SA; Whang SI; Levine S; Rickman JM; Barmak K
    Microsc Microanal; 2023 Dec; 29(6):1968-1979. PubMed ID: 37966960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Average Grain Size from Microstructure Image Using a Convolutional Neural Network.
    Jung JH; Lee SJ; Kim HS
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic segmentation of hyperreflective foci in OCT images.
    Varga L; Kovács A; Grósz T; Thury G; Hadarits F; Dégi R; Dombi J
    Comput Methods Programs Biomed; 2019 Sep; 178():91-103. PubMed ID: 31416566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SwarmPS: rapid, semi-automated single particle selection software.
    Woolford D; Ericksson G; Rothnagel R; Muller D; Landsberg MJ; Pantelic RS; McDowall A; Pailthorpe B; Young PR; Hankamer B; Banks J
    J Struct Biol; 2007 Jan; 157(1):174-88. PubMed ID: 16774837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic digital ECG signal extraction and normal QRS recognition from real scene ECG images.
    Wang S; Zhang S; Li Z; Huang L; Wei Z
    Comput Methods Programs Biomed; 2020 Apr; 187():105254. PubMed ID: 31830698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OBELISK-Net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions.
    Heinrich MP; Oktay O; Bouteldja N
    Med Image Anal; 2019 May; 54():1-9. PubMed ID: 30807894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.