These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35898088)

  • 1. Development of a Smart Chair Sensors System and Classification of Sitting Postures with Deep Learning Algorithms.
    Aminosharieh Najafi T; Abramo A; Kyamakya K; Affanni A
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing and Evaluating a Mixed Sensor Smart Chair System for Real-Time Posture Classification: Combining Pressure and Distance Sensors.
    Jeong H; Park W
    IEEE J Biomed Health Inform; 2021 May; 25(5):1805-1813. PubMed ID: 33044937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity Level Assessment Using a Smart Cushion for People with a Sedentary Lifestyle.
    Ma C; Li W; Gravina R; Cao J; Li Q; Fortino G
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28972556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a sitting posture monitoring system for children using pressure sensors: An application of convolutional neural network.
    Lee Y; Kim YM; Pyo S; Yun MH
    Work; 2022; 72(1):351-366. PubMed ID: 35431221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementing Machine Learning Algorithms to Classify Postures and Forecast Motions When Using a Dynamic Chair.
    Farhani G; Zhou Y; Danielson P; Trejos AL
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning.
    Roh J; Park HJ; Lee KJ; Hyeong J; Kim S; Lee B
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29329261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of design of dentist's chairs on body posture for dentists with different working experience.
    Huppert F; Betz W; Maurer-Grubinger C; Holzgreve F; Fraeulin L; Filmann N; Groneberg DA; Ohlendorf D
    BMC Musculoskelet Disord; 2021 May; 22(1):462. PubMed ID: 34011319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Self-Organizing Map-Based Unsupervised Learning Algorithm for Sitting Posture Recognition System.
    Cai W; Zhao D; Zhang M; Xu Y; Li Z
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors.
    Zemp R; Tanadini M; Plüss S; Schnüriger K; Singh NB; Taylor WR; Lorenzetti S
    Biomed Res Int; 2016; 2016():5978489. PubMed ID: 27868066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intelligent Posture Training: Machine-Learning-Powered Human Sitting Posture Recognition Based on a Pressure-Sensing IoT Cushion.
    Bourahmoune K; Ishac K; Amagasa T
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of trunk muscle co-contraction on spinal curvature during sitting reclining against the backrest of a chair.
    Watanabe S; Eguchi A; Kobara K; Ishida H
    Electromyogr Clin Neurophysiol; 2008; 48(8):359-65. PubMed ID: 19097476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Development of a Sitting Posture Recognition System.
    Fragkiadakis E; Dalakleidi KV; Nikita KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3364-3367. PubMed ID: 31946602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation.
    Alfakir A; Arrowsmith C; Burns D; Razmjou H; Hardisty M; Whyne C
    JMIR Rehabil Assist Technol; 2022 Aug; 9(3):e38689. PubMed ID: 35998014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can a smart chair improve the sitting behavior of office workers?
    Roossien CC; Stegenga J; Hodselmans AP; Spook SM; Koolhaas W; Brouwer S; Verkerke GJ; Reneman MF
    Appl Ergon; 2017 Nov; 65():355-361. PubMed ID: 28802456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of the seat cushion contour and the sitting posture on surface pressure distribution and comfort during seated work.
    Li W; Mo R; Yu S; Chu J; Hu Y; Wang L
    Int J Occup Med Environ Health; 2020 Sep; 33(5):675-689. PubMed ID: 32716013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Proposal of Implementation of Sitting Posture Monitoring System for Wheelchair Utilizing Machine Learning Methods.
    Ahmad J; Sidén J; Andersson H
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Smart Chair System for Posture Classification and Invisible ECG Monitoring.
    Pereira L; Plácido da Silva H
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Sitting Posture Monitoring Instrument to Assess Different Levels of Cognitive Engagement.
    Bibbo D; Carli M; Conforto S; Battisti F
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rule-based algorithm for the classification of sitting postures in the sagittal plane from the Cardiff Body Match measurement system.
    Kulon J; Partlow A; Gibson C; Wilson I; Wilcox S
    J Med Eng Technol; 2014 Jan; 38(1):5-15. PubMed ID: 24144171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low cost self-made pressure distribution sensors for ergonomic chair: Are they suitable for posture monitoring?
    Martinaitis A; Daunoraviciene K
    Technol Health Care; 2018; 26(S2):655-663. PubMed ID: 29843288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.