BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35898099)

  • 1. Time-Frequency Mask-Aware Bidirectional LSTM: A Deep Learning Approach for Underwater Acoustic Signal Separation.
    Chen J; Liu C; Xie J; An J; Huang N
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Channel Blind Source Separation of Spatial Aliasing Signal Based on Stacked-LSTM.
    Zhao M; Yao X; Wang J; Yan Y; Gao X; Fan Y
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long short-term memory for speaker generalization in supervised speech separation.
    Chen J; Wang D
    J Acoust Soc Am; 2017 Jun; 141(6):4705. PubMed ID: 28679261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic Modulation Classification for Underwater Acoustic Communication Signals Based on Deep Complex Networks.
    Yao X; Yang H; Sheng M
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Performance Evaluation of a Deep Neural Network for Spectrum Recognition of Underwater Targets.
    Liu D; Zhao X; Cao W; Wang W; Lu Y
    Comput Intell Neurosci; 2020; 2020():8848507. PubMed ID: 32802029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Underwater single-channel acoustic signal multitarget recognition using convolutional neural networks.
    Sun Q; Wang K
    J Acoust Soc Am; 2022 Mar; 151(3):2245. PubMed ID: 35364907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Convolutional Neural Network Inspired by Auditory Perception for Underwater Acoustic Target Recognition.
    Yang H; Li J; Shen S; Xu G
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30836716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning Methods for Underwater Target Feature Extraction and Recognition.
    Hu G; Wang K; Peng Y; Qiu M; Shi J; Liu L
    Comput Intell Neurosci; 2018; 2018():1214301. PubMed ID: 29780407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-Learning-Based Approach to Anomaly Detection Techniques for Large Acoustic Data in Machine Operation.
    Ahn H; Yeo I
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Deep-Learning Method with Channel Attention Mechanism for Underwater Target Recognition.
    Xue L; Zeng X; Jin A
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35897996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Underwater Target Signal Classification Using the Hybrid Routing Neural Network.
    Cheng X; Zhang H
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep transfer learning-based variable Doppler underwater acoustic communications.
    Liu Y; Zhao Y; Gerstoft P; Zhou F; Qiao G; Yin J
    J Acoust Soc Am; 2023 Jul; 154(1):232-244. PubMed ID: 37439637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification.
    Yildirim Ö
    Comput Biol Med; 2018 May; 96():189-202. PubMed ID: 29614430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Survey of Underwater Acoustic Data Classification Methods Using Deep Learning for Shoreline Surveillance.
    Domingos LCF; Santos PE; Skelton PSM; Brinkworth RSA; Sammut K
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Underwater Acoustic Target Recognition Based on Depthwise Separable Convolution Neural Networks.
    Hu G; Wang K; Liu L
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Underwater acoustic target recognition method based on a joint neural network.
    Han XC; Ren C; Wang L; Bai Y
    PLoS One; 2022; 17(4):e0266425. PubMed ID: 35486577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning for predicting respiratory rate from biosignals.
    Kumar AK; Ritam M; Han L; Guo S; Chandra R
    Comput Biol Med; 2022 May; 144():105338. PubMed ID: 35248805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multihydrophone Fusion Network for Modulation Recognition.
    Wang H; Wang B; Wu L; Tang Q
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Through-Ice Acoustic Source Tracking Using Vision Transformers with Ordinal Classification.
    Whitaker S; Barnard A; Anderson GD; Havens TC
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures.
    Yu Y; Si X; Hu C; Zhang J
    Neural Comput; 2019 Jul; 31(7):1235-1270. PubMed ID: 31113301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.