BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35898156)

  • 1. Toward a Better Understanding of Muscle Microvascular Perfusion During Exercise in Patients With Peripheral Artery Disease: The Effect of Lower-Limb Revascularization.
    Menêses A; Krastins D; Nam M; Bailey T; Quah J; Sankhla V; Lam J; Jha P; Schulze K; O'Donnell J; Magee R; Golledge J; Greaves K; Askew CD
    J Endovasc Ther; 2024 Feb; 31(1):115-125. PubMed ID: 35898156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leg blood flow and skeletal muscle microvascular perfusion responses to submaximal exercise in peripheral arterial disease.
    Meneses AL; Nam MCY; Bailey TG; Magee R; Golledge J; Hellsten Y; Keske MA; Greaves K; Askew CD
    Am J Physiol Heart Circ Physiol; 2018 Nov; 315(5):H1425-H1433. PubMed ID: 30095999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle microvascular perfusion responses to cuff occlusion and submaximal exercise assessed by contrast-enhanced ultrasound: The effect of age.
    Meneses AL; Nam MCY; Bailey TG; Anstey C; Golledge J; Keske MA; Greaves K; Askew CD
    Physiol Rep; 2020 Oct; 8(19):e14580. PubMed ID: 33038050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limb stress-rest perfusion imaging with contrast ultrasound for the assessment of peripheral arterial disease severity.
    Lindner JR; Womack L; Barrett EJ; Weltman J; Price W; Harthun NL; Kaul S; Patrie JT
    JACC Cardiovasc Imaging; 2008 May; 1(3):343-50. PubMed ID: 19356447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise versus vasodilator stress limb perfusion imaging for the assessment of peripheral artery disease.
    Davidson BP; Belcik JT; Landry G; Linden J; Lindner JR
    Echocardiography; 2017 Aug; 34(8):1187-1194. PubMed ID: 28664576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An exercise stress test for contrast-enhanced duplex ultrasound assessment of lower limb muscle perfusion in patients with peripheral arterial disease.
    Prior SJ; Chrencik MT; Christensen E; Kundi R; Ryan AS; Addison O; Lal BK
    J Vasc Surg; 2024 Feb; 79(2):397-404. PubMed ID: 37844848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [MR-Imaging of lower leg muscle perfusion].
    Leppek R; Hoos O; Sattler A; Kohle S; Azzam S; Al Haffar I; Keil B; Ricken P; Klose KJ; Alfke H
    Herz; 2004 Feb; 29(1):32-46. PubMed ID: 14968340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perfusion measures for symptom severity and differential outcome of revascularization in limb ischemia: Preliminary results with arterial spin labeling reactive hyperemia.
    Chen HJ; Roy TL; Wright GA
    J Magn Reson Imaging; 2018 Jun; 47(6):1578-1588. PubMed ID: 29193492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limb Perfusion During Exercise Assessed by Contrast Ultrasound Varies According to Symptom Severity in Patients with Peripheral Artery Disease.
    Davidson BP; Hodovan J; Mason OR; Moccetti F; Gupta A; Muller M; Belcik JT; Annex BH; Lindner JR
    J Am Soc Echocardiogr; 2019 Sep; 32(9):1086-1094.e3. PubMed ID: 31235422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of supervised exercise on skeletal muscle blood flow and vascular function measured with MRI in patients with peripheral artery disease.
    Englund EK; Langham MC; Wehrli FW; Fanning MJ; Khan Z; Schmitz KH; Ratcliffe SJ; Floyd TF; Mohler ER
    Am J Physiol Heart Circ Physiol; 2022 Sep; 323(3):H388-H396. PubMed ID: 35802515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmentation of Tissue Perfusion in Patients With Peripheral Artery Disease Using Microbubble Cavitation.
    Mason OR; Davidson BP; Sheeran P; Muller M; Hodovan JM; Sutton J; Powers J; Lindner JR
    JACC Cardiovasc Imaging; 2020 Mar; 13(3):641-651. PubMed ID: 31422129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced post-exercise muscle microvascular perfusion with compression is offset by increased muscle oxygen extraction: Assessment by contrast-enhanced ultrasound.
    Broatch JR; O'Riordan SF; Keske MA; Betik AC; Bishop DJ; Halson SL; Parker L
    FASEB J; 2021 May; 35(5):e21499. PubMed ID: 33811697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of skeletal muscle microvascular perfusion of lower extremities by cardiovascular magnetic resonance arterial spin labeling, blood oxygenation level-dependent, and intravoxel incoherent motion techniques.
    Suo S; Zhang L; Tang H; Ni Q; Li S; Mao H; Liu X; He S; Qu J; Lu Q; Xu J
    J Cardiovasc Magn Reson; 2018 Mar; 20(1):18. PubMed ID: 29551091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral revascularization attenuates the exercise pressor reflex and increases coronary exercise hyperemia in peripheral arterial disease.
    Miller AJ; Luck JC; Kim DJ; Leuenberger UA; Aziz F; Radtka JF; Sinoway LI; Muller MD
    J Appl Physiol (1985); 2018 Jul; 125(1):58-63. PubMed ID: 29648515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of peripheral blood flow in patients with peripheral artery disease: Methods and considerations.
    Salisbury DL; Brown RJ; Bronas UG; Kirk LN; Treat-Jacobson D
    Vasc Med; 2018 Apr; 23(2):163-171. PubMed ID: 29458301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related differences in skeletal muscle microvascular response to exercise as detected by contrast-enhanced ultrasound (CEUS).
    Hildebrandt W; Schwarzbach H; Pardun A; Hannemann L; Bogs B; König AM; Mahnken AH; Hildebrandt O; Koehler U; Kinscherf R
    PLoS One; 2017; 12(3):e0172771. PubMed ID: 28273102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arterial spin labeling MR imaging reproducibly measures peak-exercise calf muscle perfusion: a study in patients with peripheral arterial disease and healthy volunteers.
    Pollak AW; Meyer CH; Epstein FH; Jiji RS; Hunter JR; Dimaria JM; Christopher JM; Kramer CM
    JACC Cardiovasc Imaging; 2012 Dec; 5(12):1224-30. PubMed ID: 23236972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic Resonance Imaging-Derived Microvascular Perfusion Modeling to Assess Peripheral Artery Disease.
    Gimnich OA; Belousova T; Short CM; Taylor AA; Nambi V; Morrisett JD; Ballantyne CM; Bismuth J; Shah DJ; Brunner G
    J Am Heart Assoc; 2023 Feb; 12(3):e027649. PubMed ID: 36688362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise-induced calf muscle hyperemia: quantitative mapping with low-dose dynamic contrast enhanced magnetic resonance imaging.
    Zhang JL; Layec G; Hanrahan C; Conlin CC; Hart C; Hu N; Khor L; Mueller M; Lee VS
    Am J Physiol Heart Circ Physiol; 2019 Jan; 316(1):H201-H211. PubMed ID: 30388024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Baseline assessment and comparison of arterial anatomy, hyperemic flow, and skeletal muscle perfusion in peripheral artery disease: The Cardiovascular Cell Therapy Research Network "Patients with Intermittent Claudication Injected with ALDH Bright Cells" (CCTRN PACE) study.
    Venkatesh BA; Nauffal V; Noda C; Fujii T; Yang PC; Bettencourt J; Ricketts EP; Murphy M; Leeper NJ; Moyé L; Ebert RF; Muthupillai R; Bluemke DA; Perin EC; Hirsch AT; Lima JA;
    Am Heart J; 2017 Jan; 183():24-34. PubMed ID: 27979038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.