These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 358983)

  • 1. An unusual type of regulation of malate oxidase synthesis in Escherichia coli.
    Goldie AH; Narindrasorasak S; Sanwal BD
    Biochem Biophys Res Commun; 1978 Jul; 83(2):421-6. PubMed ID: 358983
    [No Abstract]   [Full Text] [Related]  

  • 2. Characteristics and regulation of a phospholipid-activated malate oxidase from Escherichia coli.
    Narindrasorasak S; Goldie AH; Sanwal BD
    J Biol Chem; 1979 Mar; 254(5):1540-5. PubMed ID: 368072
    [No Abstract]   [Full Text] [Related]  

  • 3. Variations in the pathways of malate oxidation and phosphorylation in different species of Mycobacteria.
    Prasada Reddy TL; Suryanarayana Murthy P; Venkitasubramanian TA
    Biochim Biophys Acta; 1975 Feb; 376(2):210-8. PubMed ID: 234747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overproduction and substrate specificity of 3-isopropylmalate dehydrogenase from Thiobacillus ferrooxidans.
    Matsunami H; Kawaguchi H; Inagaki K; Eguchi T; Kakinuma K; Tanaka H
    Biosci Biotechnol Biochem; 1998 Feb; 62(2):372-3. PubMed ID: 9532798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Utilization of malate by various Mycobacteria. Malate-vitamin K 1 reductase].
    Andrejew A; Orfanelli MT; Desbordes J
    C R Acad Hebd Seances Acad Sci D; 1972 Feb; 274(6):943-6. PubMed ID: 4622884
    [No Abstract]   [Full Text] [Related]  

  • 6. Escherichia coli mutants with a temperature-sensitive alcohol dehydrogenase.
    Lorowitz W; Clark D
    J Bacteriol; 1982 Nov; 152(2):935-8. PubMed ID: 6752127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide.
    Ji D; Wang L; Hou S; Liu W; Wang J; Wang Q; Zhao ZK
    J Am Chem Soc; 2011 Dec; 133(51):20857-62. PubMed ID: 22098020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beta-oxidation in glyoxysomes from Euglena.
    Graves LB; Becker WM
    J Protozool; 1974 Nov; 21(5):771-4. PubMed ID: 4217375
    [No Abstract]   [Full Text] [Related]  

  • 9. Stringency of substrate specificity of Escherichia coli malate dehydrogenase.
    Boernke WE; Millard CS; Stevens PW; Kakar SN; Stevens FJ; Donnelly MI
    Arch Biochem Biophys; 1995 Sep; 322(1):43-52. PubMed ID: 7574693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of arginine 102 for the substrate specificity of Escherichia coli malate dehydrogenase.
    Nicholls DJ; Miller J; Scawen MD; Clarke AR; Holbrook JJ; Atkinson T; Goward CR
    Biochem Biophys Res Commun; 1992 Dec; 189(2):1057-62. PubMed ID: 1472016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational engineering of a malate dehydrogenase for microbial production of 2,4-dihydroxybutyric acid via homoserine pathway.
    Frazão CJR; Topham CM; Malbert Y; François JM; Walther T
    Biochem J; 2018 Dec; 475(23):3887-3901. PubMed ID: 30409827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C.
    Jantama K; Zhang X; Moore JC; Shanmugam KT; Svoronos SA; Ingram LO
    Biotechnol Bioeng; 2008 Dec; 101(5):881-93. PubMed ID: 18781696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site of action of nonheme iron in the malate (flavine adenine dinucleotide) pathway of Mycobacterium phlei.
    Tyagi AK; Reddy TL; Venkitasubramanian TA
    Can J Microbiol; 1976 Jul; 22(7):1054-7. PubMed ID: 963613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of functional paralog shift mutations: conversion of Escherichia coli malate dehydrogenase to a lactate dehydrogenase.
    Yin Y; Kirsch JF
    Proc Natl Acad Sci U S A; 2007 Oct; 104(44):17353-7. PubMed ID: 17947381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin B 12 and methionine synthesis in Escherichia coli.
    Dawes J; Foster MA
    Biochim Biophys Acta; 1971 Jun; 237(3):455-64. PubMed ID: 4940764
    [No Abstract]   [Full Text] [Related]  

  • 16. Escherichia coli malate dehydrogenase, a novel solubility enhancer for heterologous proteins synthesized in Escherichia coli.
    Park JS; Han KY; Song JA; Ahn KY; Seo HS; Lee J
    Biotechnol Lett; 2007 Oct; 29(10):1513-8. PubMed ID: 17549433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Escherichia coli W3110 to produce L-malate.
    Dong X; Chen X; Qian Y; Wang Y; Wang L; Qiao W; Liu L
    Biotechnol Bioeng; 2017 Mar; 114(3):656-664. PubMed ID: 27668703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirement of flavin adenine dinucleotide and phospholipid for the activity of malate dehydrogenase from Mycobacterium avium.
    Tobari J
    Biochem Biophys Res Commun; 1964 Feb; 15(1):50-4. PubMed ID: 5835376
    [No Abstract]   [Full Text] [Related]  

  • 19. Evidence for proton tunneling and a transient covalent flavin-substrate adduct in choline oxidase S101A.
    Uluisik R; Romero E; Gadda G
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1470-1478. PubMed ID: 28843728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide specific malic enzyme depending on whether Mg2+ or Mn2+ serves as divalent cation.
    Milne JA; Cook RA
    Biochemistry; 1979 Aug; 18(16):3604-10. PubMed ID: 224913
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.