These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35898639)

  • 1. Surface Roughness and Biocompatibility of Polycaprolactone Bone Scaffolds: An Energy-Density-Guided Parameter Optimization for Selective Laser Sintering.
    Han J; Li Z; Sun Y; Cheng F; Zhu L; Zhang Y; Zhang Z; Wu J; Wang J
    Front Bioeng Biotechnol; 2022; 10():888267. PubMed ID: 35898639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inner strut morphology is the key parameter in producing highly porous and mechanically stable poly(ε-caprolactone) scaffolds via selective laser sintering.
    Tortorici M; Gayer C; Torchio A; Cho S; Schleifenbaum JH; Petersen A
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111986. PubMed ID: 33812614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering.
    Eshraghi S; Das S
    Acta Biomater; 2010 Jul; 6(7):2467-76. PubMed ID: 20144914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.
    Eshraghi S; Das S
    Acta Biomater; 2012 Aug; 8(8):3138-43. PubMed ID: 22522129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and Biological Activity of 3D-Printed Polycaprolactone/Magnesium Porous Scaffolds for Critical Size Bone Defect Repair.
    Zhao S; Xie K; Guo Y; Tan J; Wu J; Yang Y; Fu P; Wang L; Jiang W; Hao Y
    ACS Biomater Sci Eng; 2020 Sep; 6(9):5120-5131. PubMed ID: 33455263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone.
    Kinstlinger IS; Bastian A; Paulsen SJ; Hwang DH; Ta AH; Yalacki DR; Schmidt T; Miller JS
    PLoS One; 2016; 11(2):e0147399. PubMed ID: 26841023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility.
    Du Y; Liu H; Shuang J; Wang J; Ma J; Zhang S
    Colloids Surf B Biointerfaces; 2015 Nov; 135():81-89. PubMed ID: 26241919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ re-melting and re-solidification treatment of selective laser sintered polycaprolactone lattice scaffolds for improved filament quality and mechanical properties.
    Meng Z; He J; Cai Z; Zhang M; Zhang J; Ling R; Li D
    Biofabrication; 2020 May; 12(3):035012. PubMed ID: 32240988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds.
    Tian L; Zhang Z; Tian B; Zhang X; Wang N
    RSC Adv; 2020 Jan; 10(8):4805-4816. PubMed ID: 35495239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration.
    Gandolfi MG; Zamparini F; Degli Esposti M; Chiellini F; Fava F; Fabbri P; Taddei P; Prati C
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():341-361. PubMed ID: 31147007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, microstructure, and mechanical behaviour of a unique porous PHBV scaffold manufactured using selective laser sintering.
    Diermann SH; Lu M; Zhao Y; Vandi LJ; Dargusch M; Huang H
    J Mech Behav Biomed Mater; 2018 Aug; 84():151-160. PubMed ID: 29778988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite Scaffolds for Bone Tissue Regeneration Based on PCL and Mg-Containing Bioactive Glasses.
    Petretta M; Gambardella A; Boi M; Berni M; Cavallo C; Marchiori G; Maltarello MC; Bellucci D; Fini M; Baldini N; Grigolo B; Cannillo V
    Biology (Basel); 2021 May; 10(5):. PubMed ID: 34064398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration.
    Van Bael S; Desmet T; Chai YC; Pyka G; Dubruel P; Kruth JP; Schrooten J
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3404-12. PubMed ID: 23706227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doped tricalcium phosphate bone tissue engineering scaffolds using sucrose as template and microwave sintering: enhancement of mechanical and biological properties.
    Ke D; Bose S
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():398-404. PubMed ID: 28576001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of 3D PCL microsphere/TiO
    Khoshroo K; Jafarzadeh Kashi TS; Moztarzadeh F; Tahriri M; Jazayeri HE; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):586-598. PubMed ID: 27770931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.