These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35899166)

  • 41. Gait adaptations to awareness and experience of a slip when walking on a cross-slope.
    Lawrence D; Domone S; Heller B; Hendra T; Mawson S; Wheat J
    Gait Posture; 2015 Oct; 42(4):575-9. PubMed ID: 26404081
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip during locomotion.
    Marigold DS; Bethune AJ; Patla AE
    J Neurophysiol; 2003 Apr; 89(4):1727-37. PubMed ID: 12611998
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Young adults use whole-body feedback and ankle proprioception to perceive small locomotor disturbances.
    Liss DJ; Carey HD; Allen JL
    Hum Mov Sci; 2023 Jun; 89():103084. PubMed ID: 36989968
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Does stroke-induced sensorimotor impairment and perturbation intensity affect gait-slip outcomes?
    Dusane S; Gangwani R; Patel P; Bhatt T
    J Biomech; 2021 Mar; 118():110255. PubMed ID: 33581438
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Predicting slips and falls considering required and available friction.
    Hanson JP; Redfern MS; Mazumdar M
    Ergonomics; 1999 Dec; 42(12):1619-33. PubMed ID: 10643404
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Can higher training practice dosage with treadmill slip-perturbation necessarily reduce risk of falls following overground slip?
    Lee A; Bhatt T; Liu X; Wang Y; Pai YC
    Gait Posture; 2018 Mar; 61():387-392. PubMed ID: 29453101
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hip recovery strategy used by below-knee amputees following mediolateral foot perturbations.
    Miller SE; Segal AD; Klute GK; Neptune RR
    J Biomech; 2018 Jul; 76():61-67. PubMed ID: 29887363
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lower extremity kinematics during forward heel-slip.
    Kim S; Joo KS; Liu J; Sohn JH
    Technol Health Care; 2019; 27(S1):345-356. PubMed ID: 31045552
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recovery responses to surrogate slipping tasks differ from responses to actual slips.
    Troy KL; Grabiner MD
    Gait Posture; 2006 Dec; 24(4):441-7. PubMed ID: 16412642
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biomechanical characteristics of slipping during unconstrained walking, turning, gait initiation and termination.
    Nagano H; Sparrow WA; Begg RK
    Ergonomics; 2013; 56(6):1038-48. PubMed ID: 23600960
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning.
    Shell CE; Segal AD; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2017 Nov; 49():56-63. PubMed ID: 28869812
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of center of mass kinematics in predicting peak utilized coefficient of friction during walking.
    Burnfield JM; Powers CM
    J Forensic Sci; 2007 Nov; 52(6):1328-33. PubMed ID: 17868269
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of multi-joint muscular fatigue on biomechanics of slips.
    Lew FL; Qu X
    J Biomech; 2014 Jan; 47(1):59-64. PubMed ID: 24182771
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The impact of a systematic reduction in shoe-floor friction on heel contact walking kinematics-- A gait simulation approach.
    Mahboobin A; Cham R; Piazza SJ
    J Biomech; 2010 May; 43(8):1532-9. PubMed ID: 20170922
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modifiable performance domain risk-factors associated with slip-related falls.
    Troy KL; Donovan SJ; Marone JR; Bareither ML; Grabiner MD
    Gait Posture; 2008 Oct; 28(3):461-5. PubMed ID: 18396048
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Generalization of motor adaptation to repeated-slip perturbation across tasks.
    Wang TY; Bhatt T; Yang F; Pai YC
    Neuroscience; 2011 Apr; 180():85-95. PubMed ID: 21352898
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fall risk during opposing stance perturbations among healthy adults and chronic stroke survivors.
    Patel PJ; Bhatt T
    Exp Brain Res; 2018 Feb; 236(2):619-628. PubMed ID: 29279981
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Measures of dynamic balance during level walking in healthy adult subjects: Relationship with age, anthropometry and spatio-temporal gait parameters.
    Lencioni T; Carpinella I; Rabuffetti M; Cattaneo D; Ferrarin M
    Proc Inst Mech Eng H; 2020 Feb; 234(2):131-140. PubMed ID: 31736408
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of over-ground and treadmill perturbations for simulation of real-world slips and trips: A systematic review.
    Siragy T; Russo Y; Young W; Lamb SE
    Gait Posture; 2023 Feb; 100():201-209. PubMed ID: 36603326
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuromuscular determinants of slip-induced falls and recoveries in older adults.
    Sawers A; Bhatt T
    J Neurophysiol; 2018 Oct; 120(4):1534-1546. PubMed ID: 29995607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.