These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35899456)

  • 1. Free energy simulations to study mutational effect of a conserved residue, Trp24, on stability of human serum retinol-binding protein.
    Lee KH; Kuczera K
    J Biomol Struct Dyn; 2023; 41(13):6040-6050. PubMed ID: 35899456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of conserved residues in structure and stability: tryptophans of human serum retinol-binding protein, a model for the lipocalin superfamily.
    Greene LH; Chrysina ED; Irons LI; Papageorgiou AC; Acharya KR; Brew K
    Protein Sci; 2001 Nov; 10(11):2301-16. PubMed ID: 11604536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of human retinol-binding protein (RBP) with its carrier protein transthyretin reveals an interaction with the carboxy terminus of RBP.
    Naylor HM; Newcomer ME
    Biochemistry; 1999 Mar; 38(9):2647-53. PubMed ID: 10052934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function studies on human retinol-binding protein using site-directed mutagenesis.
    Sivaprasadarao A; Findlay JB
    Biochem J; 1994 Jun; 300 ( Pt 2)(Pt 2):437-42. PubMed ID: 8002949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of human transthyretin stability by the mutations at histidine 88 studied by free energy simulation.
    Lee KH; Kuczera K
    Proteins; 2022 Nov; 90(11):1825-1836. PubMed ID: 35484710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical basis for retinol deficiency induced by the I41N and G75D mutations in human plasma retinol-binding protein.
    Folli C; Viglione S; Busconi M; Berni R
    Biochem Biophys Res Commun; 2005 Nov; 336(4):1017-22. PubMed ID: 16157297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steered molecular dynamics simulations of ligand-receptor interaction in lipocalins.
    Kalikka J; Akola J
    Eur Biophys J; 2011 Feb; 40(2):181-94. PubMed ID: 21072508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma retinol-binding protein: structure and interactions with retinol, retinoids, and transthyretin.
    Zanotti G; Berni R
    Vitam Horm; 2004; 69():271-95. PubMed ID: 15196886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution structures of retinol-binding protein in complex with retinol: pH-induced protein structural changes in the crystal state.
    Calderone V; Berni R; Zanotti G
    J Mol Biol; 2003 Jun; 329(4):841-50. PubMed ID: 12787682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant human retinol-binding protein refolding, native disulfide formation, and characterization.
    Xie Y; Lashuel HA; Miroy GJ; Dikler S; Kelly JW
    Protein Expr Purif; 1998 Oct; 14(1):31-7. PubMed ID: 9758748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of liganded and unliganded forms of bovine plasma retinol-binding protein.
    Zanotti G; Berni R; Monaco HL
    J Biol Chem; 1993 May; 268(15):10728-38. PubMed ID: 8496140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics study of the stability of staphylococcal nuclease mutants: component analysis of the free energy difference of denaturation.
    Yamaotsu N; Moriguchi I; Kollman PA; Hirono S
    Biochim Biophys Acta; 1993 Apr; 1163(1):81-8. PubMed ID: 8476933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Native disulfide bonds in plasma retinol-binding protein are not essential for all-trans-retinol-binding activity.
    Reznik GO; Yu Y; Tarr GE; Cantor CR
    J Proteome Res; 2003; 2(3):243-8. PubMed ID: 12814263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partial amino acid sequence of human plasma retinol-binding protein. Isolation and alignment of the five cyanogen bromide fragments and the amino acid sequences of four of the fragments.
    Kanda Y; Goodman DS
    J Lipid Res; 1979 Sep; 20(7):865-78. PubMed ID: 573775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinol in avian oogenesis: molecular properties of the carrier protein.
    Vieira AV; Kuchler K; Schneider WJ
    DNA Cell Biol; 1995 May; 14(5):403-10. PubMed ID: 7748490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinol-induced secretion of human retinol-binding protein in yeast.
    Reppe S; Smeland S; Moskaug JO; Blomhoff R
    FEBS Lett; 1998 May; 427(2):213-9. PubMed ID: 9607314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation analysis of selective alanine mutation effect on stability of human prion protein.
    Lee KH; Kuczera K
    J Biomol Struct Dyn; 2023 Apr; 41(7):2619-2629. PubMed ID: 35176965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transfer of retinol from serum retinol-binding protein to cellular retinol-binding protein is mediated by a membrane receptor.
    Sundaram M; Sivaprasadarao A; DeSousa MM; Findlay JB
    J Biol Chem; 1998 Feb; 273(6):3336-42. PubMed ID: 9452451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assay of retinol-binding protein-transthyretin interaction and techniques to identify competing ligands.
    Mata NL; Phan K; Han Y
    Methods Mol Biol; 2010; 652():209-27. PubMed ID: 20552431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free energy simulations to understand the effect of Met → Ala mutations at positions 205, 206 and 213 on stability of human prion protein.
    Lee KH; Kuczera K
    Biophys Chem; 2021 Aug; 275():106620. PubMed ID: 34058726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.