BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35899764)

  • 1. Droplet transportation by adjusting the temporal phase shift of surface acoustic waves in the exciter-exciter mode.
    Sui M; Dong H; Mu G; Xia J; Zhao J; Yang Z; Li T; Sun T; Grattan KTV
    Lab Chip; 2022 Sep; 22(18):3402-3411. PubMed ID: 35899764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics.
    Chen C; Zhang SP; Mao Z; Nama N; Gu Y; Huang PH; Jing Y; Guo X; Costanzo F; Huang TJ
    Lab Chip; 2018 Dec; 18(23):3645-3654. PubMed ID: 30361727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly-Phenylene-Sulfide Wedge Transducer for Exciting Surface Acoustic Waves for Removing Droplets on a Glass Plate.
    Wu J; Sun C; Ueda T; Tomoeda Y; Nagasawa I; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3378-3385. PubMed ID: 34170824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An on-chip, multichannel droplet sorter using standing surface acoustic waves.
    Li S; Ding X; Guo F; Chen Y; Lapsley MI; Lin SC; Wang L; McCoy JP; Cameron CE; Huang TJ
    Anal Chem; 2013 Jun; 85(11):5468-74. PubMed ID: 23647057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring Velocity, Attenuation, and Reflection in Surface Acoustic Wave Cavities Through Acoustic Fabry-Pérot Spectra.
    Kelly L; Berini P; Bao X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1542-1548. PubMed ID: 35081023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A switching method for traveling/standing wave transportation modes in two-dimensional acoustic fields using a dual-transducer support structure.
    Mu G; Dong H; Sun T; Grattan KTV; Wu Z; Zhao J
    Ultrason Sonochem; 2023 Dec; 101():106724. PubMed ID: 38100894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput and directed microparticle manipulation in complex-shaped maze chambers based on travelling surface acoustic waves.
    Weng W; Pan H; Wang Y
    Analyst; 2022 Nov; 147(22):4962-4970. PubMed ID: 36255404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and high-precision positioning of liquid droplets using SAW systems.
    Bennès J; Alzuaga S; Chérioux F; Ballandras S; Vairac P; Manceau JF; Bastien F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):2146-51. PubMed ID: 18019253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A High-Voltage SOI CMOS Exciter Chip for a Programmable Fluidic Processor System.
    Current KW; Yuk K; McConaghy C; Gascoyne PR; Schwartz JA; Vykoukal JV; Andrews C
    IEEE Trans Biomed Circuits Syst; 2007 Jun; 1(2):105-15. PubMed ID: 23851665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SAW Synthesis With IDTs Array and the Inverse Filter: Toward a Versatile SAW Toolbox for Microfluidics and Biological Applications.
    Riaud A; Baudoin M; Thomas JL; Bou Matar O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1601-1607. PubMed ID: 28873055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mode Analysis of Pt/LGS Surface Acoustic Wave Devices.
    Xu H; Jin H; Dong S; Song X; Chen J; Xuan W; Huang S; Shi L; Luo J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulation of cancer cells in a sessile droplet
    Nam H; Sung HJ; Park J; Jeon JS
    Lab Chip; 2021 Dec; 22(1):47-56. PubMed ID: 34821225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microparticle Manipulation by Standing Surface Acoustic Waves with Dual-frequency Excitations.
    Zhou Y; Sriphutkiat Y
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comprehensive Review of Surface Acoustic Wave-Enabled Acoustic Droplet Ejection Technology and Its Applications.
    Ning J; Lei Y; Hu H; Gai C
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective cell encapsulation, lysis, pico-injection and size-controlled droplet generation using traveling surface acoustic waves in a microfluidic device.
    Mutafopulos K; Lu PJ; Garry R; Spink P; Weitz DA
    Lab Chip; 2020 Nov; 20(21):3914-3921. PubMed ID: 32966482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transportation of single cell and microbubbles by phase-shift introduced to standing leaky surface acoustic waves.
    Meng L; Cai F; Zhang Z; Niu L; Jin Q; Yan F; Wu J; Wang Z; Zheng H
    Biomicrofluidics; 2011 Dec; 5(4):44104-4410410. PubMed ID: 22662056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-droplet microparticle separation using travelling surface acoustic wave.
    Park K; Park J; Jung JH; Destgeer G; Ahmed H; Sung HJ
    Biomicrofluidics; 2017 Nov; 11(6):064112. PubMed ID: 29308101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices.
    Hsu JC; Hsu CH; Huang YW
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30642118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pure SH-SAW propagation, transduction and measurements on KNbO3.
    Pollard TB; Kenny TD; Vetelino JF; da Cunha MP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):199-208. PubMed ID: 16471447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.