These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 35899824)
1. A Monocrystalline Coordination Polymer with Multiple Redox Centers as a High-Performance Cathode for Lithium-Ion Batteries. Luo Y; Liu J; Zhang L Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202209458. PubMed ID: 35899824 [TBL] [Abstract][Full Text] [Related]
2. Copper and conjugated carbonyls of metal-organic polymers as dual redox centers for Na storage. Wang L; Liu N; Zhao X; Wang X; Zhang T; Luo Z; Li F Chem Sci; 2024 Feb; 15(6):2133-2140. PubMed ID: 38332813 [TBL] [Abstract][Full Text] [Related]
3. Conjugated Carbonyl Polymer-Based Flexible Cathode for Superior Lithium-Organic Batteries. Li Q; Li D; Wang H; Wang HG; Li Y; Si Z; Duan Q ACS Appl Mater Interfaces; 2019 Aug; 11(32):28801-28808. PubMed ID: 31313916 [TBL] [Abstract][Full Text] [Related]
4. A Self-Polymerized Nitro-Substituted Conjugated Carbonyl Compound as High-Performance Cathode for Lithium-Organic Batteries. Li Q; Wang H; Wang HG; Si Z; Li C; Bai J ChemSusChem; 2020 May; 13(9):2449-2456. PubMed ID: 31867898 [TBL] [Abstract][Full Text] [Related]
5. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries. Zhang Y; Huang Y; Yang G; Bu F; Li K; Shakir I; Xu Y ACS Appl Mater Interfaces; 2017 May; 9(18):15549-15556. PubMed ID: 28425698 [TBL] [Abstract][Full Text] [Related]
6. 2D Covalent Organic Framework Covalently Anchored with Carbon Nanotube as High-Performance Cathodes for Lithium and Sodium-Ion Batteries. Biswas S; Pramanik A; Dey A; Chattopadhyay S; Pieshkov TS; Bhattacharyya S; Ajayan PM; Maji TK Small; 2024 Nov; 20(48):e2406173. PubMed ID: 39225362 [TBL] [Abstract][Full Text] [Related]
7. π-Conjugated Hexaazatrinaphthylene-Based Azo Polymer Cathode Material Synthesized by a Reductive Homocoupling Reaction for Organic Lithium-Ion Batteries. Sun Z; Liu H; Shu M; Lin Z; Liu B; Li Y; Li J; Yu T; Yao H; Zhu S; Guan S ACS Appl Mater Interfaces; 2022 Aug; 14(32):36700-36710. PubMed ID: 35938596 [TBL] [Abstract][Full Text] [Related]
8. Nine-Electron Transfer of Binder Synergistic π-d Conjugated Coordination Polymers as High-Performance Lithium Storage Materials. Wu Y; Shen J; Sun Z; Yang Y; Li F; Ji S; Zhu M; Liu J Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202215864. PubMed ID: 36454222 [TBL] [Abstract][Full Text] [Related]
9. High-Rate Organic Cathode Constructed by Iron-Hexaazatrinaphthalene Tricarboxylic Acid Coordination Polymer for Li-Ion Batteries. Wang Y; Qiao Z; Liu K; Yu L; Lv Y; Shi L; Zhao Y; Cao D; Wang Z; Wang S; Yuan S Adv Sci (Weinh); 2022 Dec; 9(36):e2205069. PubMed ID: 36354197 [TBL] [Abstract][Full Text] [Related]
10. A Redox-Active 2D Metal-Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Jiang Q; Xiong P; Liu J; Xie Z; Wang Q; Yang XQ; Hu E; Cao Y; Sun J; Xu Y; Chen L Angew Chem Int Ed Engl; 2020 Mar; 59(13):5273-5277. PubMed ID: 31893570 [TBL] [Abstract][Full Text] [Related]
11. Transition-Metal Sulfides for High-Performance Lithium Sulfide Cathodes in All-Solid-State Lithium-Sulfur Batteries. Gamo H; Hikima K; Matsuda A ACS Omega; 2023 Dec; 8(48):45557-45565. PubMed ID: 38075765 [TBL] [Abstract][Full Text] [Related]
12. A Porphyrin-Phenylalkynyl-Based Conjugated Organic Polymer as a High-Performance Cathode for Rechargeable Organic Batteries. Peng X; Zhou Y; Chen B; Cao W; Sun C; Liao Y; Huang X; Tu X; Chen Z; Liu W; Gao P ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39361519 [TBL] [Abstract][Full Text] [Related]
13. A Conjugated Coordination Polymer with Benzoquinone as Electrode Material for All Organic Symmetric Lithium-ion Batteries. Liang C; Cai X; Lin J; Chen Y; Xie Y; Liu Y Chempluschem; 2024 May; 89(5):e202300620. PubMed ID: 38052722 [TBL] [Abstract][Full Text] [Related]
14. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. Zhu Z; Hong M; Guo D; Shi J; Tao Z; Chen J J Am Chem Soc; 2014 Nov; 136(47):16461-4. PubMed ID: 25383544 [TBL] [Abstract][Full Text] [Related]
15. Stable Hexaazatrinaphthalene-Based Planar Polymer Cathode Material for Organic Lithium-Ion Batteries. Sun Z; Yao H; Li J; Liu B; Lin Z; Shu M; Liu H; Zhu S; Guan S ACS Appl Mater Interfaces; 2023 Sep; 15(36):42603-42610. PubMed ID: 37639524 [TBL] [Abstract][Full Text] [Related]
16. Polyimide@Ketjenblack Composite: A Porous Organic Cathode for Fast Rechargeable Potassium-Ion Batteries. Zhang C; Xu Y; He K; Dong Y; Zhao H; Medenbach L; Wu Y; Balducci A; Hannappel T; Lei Y Small; 2020 Sep; 16(38):e2002953. PubMed ID: 32815290 [TBL] [Abstract][Full Text] [Related]
17. One-Pot Synthesis of Co-Based Coordination Polymer Nanowire for Li-Ion Batteries with Great Capacity and Stable Cycling Stability. Wang P; Lou X; Li C; Hu X; Yang Q; Hu B Nanomicro Lett; 2018; 10(2):19. PubMed ID: 30393668 [TBL] [Abstract][Full Text] [Related]
18. Ferrocene-Based Mixed-Valence Metal-Organic Framework as an Efficient and Stable Cathode for Lithium-Ion-Based Dual-Ion Battery. Li C; Yang H; Xie J; Wang K; Li J; Zhang Q ACS Appl Mater Interfaces; 2020 Jul; 12(29):32719-32725. PubMed ID: 32602692 [TBL] [Abstract][Full Text] [Related]
19. Metalophilic Gel Polymer Electrolyte for in Situ Tailoring Cathode/Electrolyte Interface of High-Nickel Oxide Cathodes in Quasi-Solid-State Li-Ion Batteries. Sun YY; Wang YY; Li GR; Liu S; Gao XP ACS Appl Mater Interfaces; 2019 Apr; 11(16):14830-14839. PubMed ID: 30945528 [TBL] [Abstract][Full Text] [Related]
20. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries. Wang DY; Guo W; Fu Y Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]