BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 35899946)

  • 1. Large protein complex interfaces have evolved to promote cotranslational assembly.
    Badonyi M; Marsh JA
    Elife; 2022 Jul; 11():. PubMed ID: 35899946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling.
    Shiber A; Döring K; Friedrich U; Klann K; Merker D; Zedan M; Tippmann F; Kramer G; Bukau B
    Nature; 2018 Sep; 561(7722):268-272. PubMed ID: 30158700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Benefits of Cotranslational Assembly: A Structural Perspective.
    Schwarz A; Beck M
    Trends Cell Biol; 2019 Oct; 29(10):791-803. PubMed ID: 31427208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Principles of cotranslational ubiquitination and quality control at the ribosome.
    Duttler S; Pechmann S; Frydman J
    Mol Cell; 2013 May; 50(3):379-93. PubMed ID: 23583075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hallmarks and evolutionary drivers of cotranslational protein complex assembly.
    Badonyi M; Marsh JA
    FEBS J; 2023 May; ():. PubMed ID: 37202910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapidly Translated Polypeptides Are Preferred Substrates for Cotranslational Protein Degradation.
    Ha SW; Ju D; Hao W; Xie Y
    J Biol Chem; 2016 Apr; 291(18):9827-34. PubMed ID: 26961882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the influence of codon translation rates on cotranslational protein folding.
    O'Brien EP; Ciryam P; Vendruscolo M; Dobson CM
    Acc Chem Res; 2014 May; 47(5):1536-44. PubMed ID: 24784899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cotranslational Mechanisms of Protein Biogenesis and Complex Assembly in Eukaryotes.
    Morales-Polanco F; Lee JH; Barbosa NM; Frydman J
    Annu Rev Biomed Data Sci; 2022 Aug; 5():67-94. PubMed ID: 35472290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear import factor Srp1 and its associated protein Sts1 couple ribosome-bound nascent polypeptides to proteasomes for cotranslational degradation.
    Ha SW; Ju D; Xie Y
    J Biol Chem; 2014 Jan; 289(5):2701-10. PubMed ID: 24338021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operon structure and cotranslational subunit association direct protein assembly in bacteria.
    Shieh YW; Minguez P; Bork P; Auburger JJ; Guilbride DL; Kramer G; Bukau B
    Science; 2015 Nov; 350(6261):678-80. PubMed ID: 26405228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo translation rates can substantially delay the cotranslational folding of the Escherichia coli cytosolic proteome.
    Ciryam P; Morimoto RI; Vendruscolo M; Dobson CM; O'Brien EP
    Proc Natl Acad Sci U S A; 2013 Jan; 110(2):E132-40. PubMed ID: 23256155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cotranslational Folding of Proteins on the Ribosome.
    Liutkute M; Samatova E; Rodnina MV
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31936054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal cotranslational interactions direct assembly of the human multi-tRNA synthetase complex.
    Khan K; Long B; Gogonea V; Deshpande GM; Vasu K; Fox PL
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2205669119. PubMed ID: 36037331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins.
    Natan E; Endoh T; Haim-Vilmovsky L; Flock T; Chalancon G; Hopper JTS; Kintses B; Horvath P; Daruka L; Fekete G; Pál C; Papp B; Oszi E; Magyar Z; Marsh JA; Elcock AH; Babu MM; Robinson CV; Sugimoto N; Teichmann SA
    Nat Struct Mol Biol; 2018 Mar; 25(3):279-288. PubMed ID: 29434345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes.
    del Alamo M; Hogan DJ; Pechmann S; Albanese V; Brown PO; Frydman J
    PLoS Biol; 2011 Jul; 9(7):e1001100. PubMed ID: 21765803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cotranslational sorting and processing of newly synthesized proteins in eukaryotes.
    Gamerdinger M; Deuerling E
    Trends Biochem Sci; 2024 Feb; 49(2):105-118. PubMed ID: 37919225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural ensemble of a ribosome-nascent chain complex during cotranslational protein folding.
    Cabrita LD; Cassaignau AME; Launay HMM; Waudby CA; Wlodarski T; Camilloni C; Karyadi ME; Robertson AL; Wang X; Wentink AS; Goodsell L; Woolhead CA; Vendruscolo M; Dobson CM; Christodoulou J
    Nat Struct Mol Biol; 2016 Apr; 23(4):278-285. PubMed ID: 26926436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cotranslational signal-independent SRP preloading during membrane targeting.
    Chartron JW; Hunt KC; Frydman J
    Nature; 2016 Aug; 536(7615):224-8. PubMed ID: 27487213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic modelling indicates that fast-translating codons can coordinate cotranslational protein folding by avoiding misfolded intermediates.
    O'Brien EP; Vendruscolo M; Dobson CM
    Nat Commun; 2014; 5():2988. PubMed ID: 24394622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding.
    Zhao T; Chen YM; Li Y; Wang J; Chen S; Gao N; Qian W
    Genome Biol; 2021 Jan; 22(1):16. PubMed ID: 33402206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.