These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 35900023)

  • 21. Evaluating native-like structures of RNA-protein complexes through the deep learning method.
    Zeng C; Jian Y; Vosoughi S; Zeng C; Zhao Y
    Nat Commun; 2023 Feb; 14(1):1060. PubMed ID: 36828844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An expanded benchmark for antibody-antigen docking and affinity prediction reveals insights into antibody recognition determinants.
    Guest JD; Vreven T; Zhou J; Moal I; Jeliazkov JR; Gray JJ; Weng Z; Pierce BG
    Structure; 2021 Jun; 29(6):606-621.e5. PubMed ID: 33539768
    [TBL] [Abstract][Full Text] [Related]  

  • 23. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking.
    Su C; Nguyen TD; Zheng J; Kwoh CK
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S9. PubMed ID: 25521441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AlphaFold Models of Small Proteins Rival the Accuracy of Solution NMR Structures.
    Tejero R; Huang YJ; Ramelot TA; Montelione GT
    Front Mol Biosci; 2022; 9():877000. PubMed ID: 35769913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation.
    Lee CY; Hubrich D; Varga JK; Schäfer C; Welzel M; Schumbera E; Djokic M; Strom JM; Schönfeld J; Geist JL; Polat F; Gibson TJ; Keller Valsecchi CI; Kumar M; Schueler-Furman O; Luck K
    Mol Syst Biol; 2024 Feb; 20(2):75-97. PubMed ID: 38225382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulated unbound structures for benchmarking of protein docking in the DOCKGROUND resource.
    Kirys T; Ruvinsky AM; Singla D; Tuzikov AV; Kundrotas PJ; Vakser IA
    BMC Bioinformatics; 2015 Jul; 16(1):243. PubMed ID: 26227548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy-based graph convolutional networks for scoring protein docking models.
    Cao Y; Shen Y
    Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F; Dokholyan NV
    J Chem Inf Model; 2013 Aug; 53(8):1871-9. PubMed ID: 23237273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applying and improving AlphaFold at CASP14.
    Jumper J; Evans R; Pritzel A; Green T; Figurnov M; Ronneberger O; Tunyasuvunakool K; Bates R; Žídek A; Potapenko A; Bridgland A; Meyer C; Kohl SAA; Ballard AJ; Cowie A; Romera-Paredes B; Nikolov S; Jain R; Adler J; Back T; Petersen S; Reiman D; Clancy E; Zielinski M; Steinegger M; Pacholska M; Berghammer T; Silver D; Vinyals O; Senior AW; Kavukcuoglu K; Kohli P; Hassabis D
    Proteins; 2021 Dec; 89(12):1711-1721. PubMed ID: 34599769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting Protein-Peptide Interactions: Benchmarking Deep Learning Techniques and a Comparison with Focused Docking.
    Shanker S; Sanner MF
    J Chem Inf Model; 2023 May; 63(10):3158-3170. PubMed ID: 37167566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A nonredundant structure dataset for benchmarking protein-RNA computational docking.
    Huang SY; Zou X
    J Comput Chem; 2013 Feb; 34(4):311-8. PubMed ID: 23047523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting protein conformational changes for unbound and homology docking: learning from intrinsic and induced flexibility.
    Chen H; Sun Y; Shen Y
    Proteins; 2017 Mar; 85(3):544-556. PubMed ID: 27862345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Topological links in predicted protein complex structures reveal limitations of AlphaFold.
    Hou Y; Xie T; He L; Tao L; Huang J
    Commun Biol; 2023 Oct; 6(1):1098. PubMed ID: 37898666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The structural coverage of the human proteome before and after AlphaFold.
    Porta-Pardo E; Ruiz-Serra V; Valentini S; Valencia A
    PLoS Comput Biol; 2022 Jan; 18(1):e1009818. PubMed ID: 35073311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved AlphaFold modeling with implicit experimental information.
    Terwilliger TC; Poon BK; Afonine PV; Schlicksup CJ; Croll TI; Millán C; Richardson JS; Read RJ; Adams PD
    Nat Methods; 2022 Nov; 19(11):1376-1382. PubMed ID: 36266465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SpatialPPI: Three-dimensional space protein-protein interaction prediction with AlphaFold Multimer.
    Hu W; Ohue M
    Comput Struct Biotechnol J; 2024 Dec; 23():1214-1225. PubMed ID: 38545599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of docking methodologies to modeled proteins.
    Singh A; Dauzhenka T; Kundrotas PJ; Sternberg MJE; Vakser IA
    Proteins; 2020 Sep; 88(9):1180-1188. PubMed ID: 32170770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The AlphaFold Database of Protein Structures: A Biologist's Guide.
    David A; Islam S; Tankhilevich E; Sternberg MJE
    J Mol Biol; 2022 Jan; 434(2):167336. PubMed ID: 34757056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking.
    Yan Y; Wen Z; Wang X; Huang SY
    Proteins; 2017 Mar; 85(3):497-512. PubMed ID: 28026062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling T cell receptor recognition of CD1-lipid and MR1-metabolite complexes.
    Pierce BG; Vreven T; Weng Z
    BMC Bioinformatics; 2014 Sep; 15(1):319. PubMed ID: 25260513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.