BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35900053)

  • 1. Hydrogen Borrowing: towards Aliphatic Tertiary Amines from Lignin Model Compounds Using a Supported Copper Catalyst.
    Ruijten D; Narmon T; De Weer H; van der Zweep R; Poleunis C; Debecker DP; Maes BUW; Sels BF
    ChemSusChem; 2022 Oct; 15(19):e202200868. PubMed ID: 35900053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic hydrogenolysis of lignin in ethanol/isopropanol over an activated carbon supported nickel-copper catalyst.
    Cheng C; Li P; Yu W; Shen D; Gu S
    Bioresour Technol; 2021 Jan; 319():124238. PubMed ID: 33254461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary amines from lignocellulose by direct amination of alcohol intermediates, catalyzed by RANEY® Ni.
    Wu X; De Bruyn M; Barta K
    Catal Sci Technol; 2022 Oct; 12(19):5908-5916. PubMed ID: 36324826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemilabile Amine-Functionalized Efficient Azo-Aromatic Cu-Catalysts Inspired by Galactose Oxidase: Impact of Amine Sidearm on Catalytic Aerobic Oxidation of Alcohols.
    Khatua M; Goswami B; Hans S; Kamal ; Mazumder S; Samanta S
    Inorg Chem; 2022 Nov; 61(44):17777-17789. PubMed ID: 36278950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic hydrogenolysis of alkali lignin in supercritical ethanol over copper monometallic catalyst supported on a chromium-based metal-organic framework for the efficient production of aromatic monomers.
    Tran MH; Phan DP; Nguyen TH; Kim HB; Kim J; Park ED; Lee EY
    Bioresour Technol; 2021 Dec; 342():125941. PubMed ID: 34543818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient and controllable alcoholysis of Kraft lignin catalyzed by porous zeolite-supported nickel-copper catalyst.
    Kong L; Liu C; Gao J; Wang Y; Dai L
    Bioresour Technol; 2019 Mar; 276():310-317. PubMed ID: 30641329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amine-Mediated Bond Cleavage in Oxidized Lignin Models.
    Li H; Liu M; Liu H; Luo N; Zhang C; Wang F
    ChemSusChem; 2020 Sep; 13(17):4660-4665. PubMed ID: 32539209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective hydrodeoxygenation of lignin model compound (3,4-dimethoxybenzyl alcohol) by Pd/CN
    Zhang H; Liu Y; Fu S; Deng Y
    Int J Biol Macromol; 2021 Feb; 169():274-281. PubMed ID: 33345971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring Active Cu
    Dai X; Li T; Wang B; Kreyenschulte C; Bartling S; Liu S; He D; Yuan H; Brückner A; Shi F; Rabeah J; Cui X
    Angew Chem Int Ed Engl; 2023 May; 62(21):e202217380. PubMed ID: 36951593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Methylation of Amines with Carbon Dioxide and Molecular Hydrogen using Supported Gold Catalysts.
    Du XL; Tang G; Bao HL; Jiang Z; Zhong XH; Su DS; Wang JQ
    ChemSusChem; 2015 Oct; 8(20):3489-96. PubMed ID: 26364582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper- and Vanadium-Catalyzed Oxidative Cleavage of Lignin using Dioxygen.
    Mottweiler J; Puche M; Räuber C; Schmidt T; Concepción P; Corma A; Bolm C
    ChemSusChem; 2015 Jun; 8(12):2106-13. PubMed ID: 26013592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of lignin structure on oil production via hydroprocessing with a copper-doped porous metal oxide catalyst.
    Gillet S; Petitjean L; Aguedo M; Lam CH; Blecker C; Anastas PT
    Bioresour Technol; 2017 Jun; 233():216-226. PubMed ID: 28282608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a general non-noble metal catalyst for the benign amination of alcohols with amines and ammonia.
    Cui X; Dai X; Deng Y; Shi F
    Chemistry; 2013 Mar; 19(11):3665-75. PubMed ID: 23417959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignin-Derived Syringol and Acetosyringone from Palm Bunch Using Heterogeneous Oxidative Depolymerization over Mixed Metal Oxide Catalysts under Microwave Heating.
    Panyadee R; Saengsrichan A; Posoknistakul P; Laosiripojana N; Ratchahat S; Matsagar BM; Wu KC; Sakdaronnarong C
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic ethanolysis and gasification of kraft lignin into aromatic alcohols and H2-rich gas over Rh supported on La2O3/CeO2-ZrO2.
    Yang J; Zhao L; Liu C; Wang Y; Dai L
    Bioresour Technol; 2016 Oct; 218():926-33. PubMed ID: 27441830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel lignin-supported copper complex as a highly efficient and recyclable nanocatalyst for Ullmann reaction.
    Mo B; Li Z; Peng J; Chen C
    Int J Biol Macromol; 2023 Jun; 239():124263. PubMed ID: 37004929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Branched Tertiary Amines from Aldehydes and α-Olefins by Combined Multiphase Tandem Reactions.
    Strohmann M; Vorholt AJ; Leitner W
    Chemistry; 2022 Oct; 28(58):e202202081. PubMed ID: 35916208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks.
    Schutyser W; Van den Bosch S; Dijkmans J; Turner S; Meledina M; Van Tendeloo G; Debecker DP; Sels BF
    ChemSusChem; 2015 May; 8(10):1805-18. PubMed ID: 25881563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic hydrothermal liquefaction of alkali lignin over activated bio-char supported bimetallic catalyst.
    Biswas B; Kumar A; Kaur R; Krishna BB; Bhaskar T
    Bioresour Technol; 2021 Oct; 337():125439. PubMed ID: 34320735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen.
    Zakzeski J; Jongerius AL; Bruijnincx PC; Weckhuysen BM
    ChemSusChem; 2012 Aug; 5(8):1602-9. PubMed ID: 22740175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.