These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35900053)

  • 21. Controlling the selectivity to chemicals from catalytic depolymerization of kraft lignin with in-situ H
    Luo L; Yang J; Yao G; Jin F
    Bioresour Technol; 2018 Sep; 264():1-6. PubMed ID: 29778802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines.
    Murugesan K; Senthamarai T; Chandrashekhar VG; Natte K; Kamer PCJ; Beller M; Jagadeesh RV
    Chem Soc Rev; 2020 Sep; 49(17):6273-6328. PubMed ID: 32729851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-step alcoholysis of lignin into small-molecular aromatics: Influence of temperature, solvent, and catalyst.
    Wang F; Yu YZ; Chen Y; Yang CY; Yang YY
    Biotechnol Rep (Amst); 2019 Dec; 24():e00363. PubMed ID: 31440458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alcohol Amination Catalyzed by Copper Powder as a Self-Supported Catalyst.
    Wu Y; Huang Y; Dai X; Shi F
    ChemSusChem; 2019 Jul; 12(13):3185-3191. PubMed ID: 30403439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic hydrotreatment of kraft lignin into aromatic alcohols over nickel-rhenium supported on niobium oxide catalyst.
    Kong L; Zhang L; Gu J; Gou L; Xie L; Wang Y; Dai L
    Bioresour Technol; 2020 Mar; 299():122582. PubMed ID: 31877480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pd-CuFe Catalyst for Transfer Hydrogenation of Nitriles: Controllable Selectivity to Primary Amines and Secondary Amines.
    Liu L; Liu Y; Ai Y; Li J; Zhou J; Fan Z; Bao H; Jiang R; Hu Z; Wang J; Jing K; Wang Y; Liang Q; Sun H
    iScience; 2018 Oct; 8():61-73. PubMed ID: 30286395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manganese-Catalyzed Mono-N-Methylation of Aliphatic Primary Amines without the Requirement of External High-Hydrogen Pressure.
    Ji J; Huo Y; Dai Z; Chen Z; Tu T
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202318763. PubMed ID: 38300154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades.
    Mutti FG; Knaus T; Scrutton NS; Breuer M; Turner NJ
    Science; 2015 Sep; 349(6255):1525-9. PubMed ID: 26404833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Situ-Generated, Dispersed Cu Catalysts for the Catalytic Hydrogenolysis of Glycerol.
    Porukova I; Samoilov V; Ramazanov D; Kniazeva M; Maximov A
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36557910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic conversion of nonfood woody biomass solids to organic liquids.
    Barta K; Ford PC
    Acc Chem Res; 2014 May; 47(5):1503-12. PubMed ID: 24745655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic Lignin Depolymerization to Aromatic Chemicals.
    Zhang C; Wang F
    Acc Chem Res; 2020 Feb; 53(2):470-484. PubMed ID: 31999099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic hydrothermal liquefaction of alkali lignin for monophenols production over homologous biochar-supported copper catalysts in water.
    Zhang J; Ge Y; Li Z
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126656. PubMed ID: 37660845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective Fragmentation of Biorefinery Corncob Lignin into p-Hydroxycinnamic Esters with a Supported Zinc Molybdate Catalyst.
    Wang S; Gao W; Li H; Xiao LP; Sun RC; Song G
    ChemSusChem; 2018 Jul; 11(13):2114-2123. PubMed ID: 29660264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unraveling the reaction mechanism of selective C9 monomeric phenols formation from lignin using Pd-Al
    Gurrala L; Kumar MM; Yerrayya A; Kandasamy P; Castaño P; Raja T; Pilloni G; Paek C; Vinu R
    Bioresour Technol; 2022 Jan; 344(Pt B):126204. PubMed ID: 34710595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature-independent catalytic two-electron reduction of dioxygen by ferrocenes with a copper(II) tris[2-(2-pyridyl)ethyl]amine catalyst in the presence of perchloric acid.
    Das D; Lee YM; Ohkubo K; Nam W; Karlin KD; Fukuzumi S
    J Am Chem Soc; 2013 Feb; 135(7):2825-34. PubMed ID: 23394287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Funneled Depolymerization of Ionic Liquid-Based Biorefinery "Heterogeneous" Lignin into Guaiacols over Reusable Palladium Catalyst.
    Choudhary H; Das L; Pelton JG; Sheps L; Simmons BA; Gladden JM; Singh S
    Chemistry; 2023 May; 29(27):e202300330. PubMed ID: 36746778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Total utilization of lignin and carbohydrates in
    Chen X; Zhang K; Xiao LP; Sun RC; Song G
    Biotechnol Biofuels; 2020; 13():2. PubMed ID: 31921351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pt-Sn/γ-Al2O3-catalyzed highly efficient direct synthesis of secondary and tertiary amines and imines.
    He W; Wang L; Sun C; Wu K; He S; Chen J; Wu P; Yu Z
    Chemistry; 2011 Nov; 17(47):13308-17. PubMed ID: 21997929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Allylic C-H amination cross-coupling furnishes tertiary amines by electrophilic metal catalysis.
    Ali SZ; Budaitis BG; Fontaine DFA; Pace AL; Garwin JA; White MC
    Science; 2022 Apr; 376(6590):276-283. PubMed ID: 35420962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ruthenium-catalyzed tertiary amine formation from nitroarenes and alcohols.
    Feng C; Liu Y; Peng S; Shuai Q; Deng G; Li CJ
    Org Lett; 2010 Nov; 12(21):4888-91. PubMed ID: 20929260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.