These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 35900138)
1. Phase Transformation-Induced Quantum Dot States on the Bi/Si(111) Surface. Chi L; Nogami J; Singh CV ACS Appl Mater Interfaces; 2022 Aug; 14(31):36217-36226. PubMed ID: 35900138 [TBL] [Abstract][Full Text] [Related]
2. Quantum well states and sizable Rashba splitting on Pb induced α-phase Bi/Si(111) surface reconstruction. Chi L; Singh CV; Nogami J Nanoscale; 2021 Oct; 13(39):16622-16628. PubMed ID: 34585701 [TBL] [Abstract][Full Text] [Related]
3. Scanning tunneling microscopy investigations of unoccupied surface states in two-dimensional semiconducting β-√3 × √3-Bi/Si(111) surface. Gou J; Kong LJ; Li WB; Sheng SX; Li H; Meng S; Cheng P; Wu KH; Chen L Phys Chem Chem Phys; 2018 Aug; 20(30):20188-20193. PubMed ID: 30027957 [TBL] [Abstract][Full Text] [Related]
4. Controlling the Polarity of the Molecular Beam Epitaxy Grown In-Bi Atomic Film on the Si(111) Surface. Lin CY; Hsu CH; Huang YZ; Hsieh SC; Chen HD; Huang L; Huang ZQ; Chuang FC; Lin DS Sci Rep; 2019 Jan; 9(1):756. PubMed ID: 30679630 [TBL] [Abstract][Full Text] [Related]
5. Evidence of Garagnani D; De Padova P; Ottaviani C; Quaresima C; Generosi A; Paci B; Olivieri B; Jałochowski M; Krawiec M Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268964 [TBL] [Abstract][Full Text] [Related]
6. A 2D Bismuth-Induced Honeycomb Surface Structure on GaAs(111). Liu Y; Benter S; Ong CS; Maciel RP; Björk L; Irish A; Eriksson O; Mikkelsen A; Timm R ACS Nano; 2023 Mar; 17(5):5047-5058. PubMed ID: 36821844 [TBL] [Abstract][Full Text] [Related]
7. Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy. Wang T; Vaxenburg R; Liu W; Rupich SM; Lifshitz E; Efros AL; Talapin DV; Sibener SJ ACS Nano; 2015 Jan; 9(1):725-32. PubMed ID: 25531244 [TBL] [Abstract][Full Text] [Related]
8. Interplay between Switching Driven by the Tunneling Current and Atomic Force of a Bistable Four-Atom Si Quantum Dot. Yamazaki S; Maeda K; Sugimoto Y; Abe M; Zobač V; Pou P; Rodrigo L; Mutombo P; Pérez R; Jelínek P; Morita S Nano Lett; 2015 Jul; 15(7):4356-63. PubMed ID: 26027677 [TBL] [Abstract][Full Text] [Related]
9. Tuning the band gap in silicene by oxidation. Du Y; Zhuang J; Liu H; Xu X; Eilers S; Wu K; Cheng P; Zhao J; Pi X; See KW; Peleckis G; Wang X; Dou SX ACS Nano; 2014 Oct; 8(10):10019-25. PubMed ID: 25248135 [TBL] [Abstract][Full Text] [Related]
10. Study of single silicon quantum dots' band gap and single-electron charging energies by room temperature scanning tunneling microscopy. Zaknoon B; Bahir G; Saguy C; Edrei R; Hoffman A; Rao RA; Muralidhar R; Chang KM Nano Lett; 2008 Jun; 8(6):1689-94. PubMed ID: 18484776 [TBL] [Abstract][Full Text] [Related]
11. Microstructure and optical response optimization of Ge/Si quantum dots transformed from the sputtering-grown Ge thin film by manipulating the thermal annealing. Shu Q; Wang R; Yang J; Zhang M; Zeng T; Sun T; Wang C; Yang Y Nanotechnology; 2018 Mar; 29(9):095601. PubMed ID: 29256868 [TBL] [Abstract][Full Text] [Related]
12. Solution-Phase Hybrid Passivation for Efficient Infrared-Band Gap Quantum Dot Solar Cells. Mahajan C; Sharma A; Rath AK ACS Appl Mater Interfaces; 2020 Nov; 12(44):49840-49848. PubMed ID: 33081466 [TBL] [Abstract][Full Text] [Related]