These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35900202)

  • 1. Global analysis of cytosine and adenine DNA modifications across the tree of life.
    Varma SJ; Calvani E; Grüning NM; Messner CB; Grayson N; Capuano F; Mülleder M; Ralser M
    Elife; 2022 Jul; 11():. PubMed ID: 35900202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A validated quantitative liquid chromatography-tandem quadrupole mass spectrometry method for monitoring isotopologues to evaluate global modified cytosine ratios in genomic DNA.
    Tsuji M; Matsunaga H; Jinno D; Tsukamoto H; Suzuki N; Tomioka Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Mar; 953-954():38-47. PubMed ID: 24568937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications.
    Hong S; Cheng X
    Adv Exp Med Biol; 2016; 945():321-341. PubMed ID: 27826845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances on DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications.
    Ren R; Horton JR; Hong S; Cheng X
    Adv Exp Med Biol; 2022; 1389():295-315. PubMed ID: 36350515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species.
    Capuano F; Mülleder M; Kok R; Blom HJ; Ralser M
    Anal Chem; 2014 Apr; 86(8):3697-702. PubMed ID: 24640988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sources of artifact in measurements of 6mA and 4mC abundance in eukaryotic genomic DNA.
    O'Brown ZK; Boulias K; Wang J; Wang SY; O'Brown NM; Hao Z; Shibuya H; Fady PE; Shi Y; He C; Megason SG; Liu T; Greer EL
    BMC Genomics; 2019 Jun; 20(1):445. PubMed ID: 31159718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering Epigenetic Cytosine Modifications by Direct Molecular Recognition.
    Kubik G; Summerer D
    ACS Chem Biol; 2015 Jul; 10(7):1580-9. PubMed ID: 25897631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of 5-methyldeoxycytosine and oxidized derivatives by nano-liquid chromatography with zwitterionic monolithic capillary column.
    Qiu D; Liu G; Li F; Kang J
    J Chromatogr A; 2023 Mar; 1693():463895. PubMed ID: 36857983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High sensitivity 5-hydroxymethylcytosine detection in Balb/C brain tissue.
    Davis T; Vaisvila R
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21307836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic modification of cytosines fine tunes the stability of i-motif DNA.
    Wright EP; Abdelhamid MAS; Ehiabor MO; Grigg MC; Irving K; Smith NM; Waller ZAE
    Nucleic Acids Res; 2020 Jan; 48(1):55-62. PubMed ID: 31777919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunochemical Detection of Modified Species of Cytosine in Plant Tissues.
    Viejo M; Yakovlev I; Fossdal CG
    Methods Mol Biol; 2021; 2198():209-216. PubMed ID: 32822034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effect of three base modifications on DNA thermostability revealed by high resolution melting.
    López CM; Lloyd AJ; Leonard K; Wilkinson MJ
    Anal Chem; 2012 Sep; 84(17):7336-42. PubMed ID: 22882125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-Hydroxymethylcytosine--the elusive epigenetic mark in mammalian DNA.
    Kriukienė E; Liutkevičiūtė Z; Klimašauskas S
    Chem Soc Rev; 2012 Nov; 41(21):6916-30. PubMed ID: 22842880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive and simultaneous determination of 5-methylcytosine and its oxidation products in genomic DNA by chemical derivatization coupled with liquid chromatography-tandem mass spectrometry analysis.
    Tang Y; Zheng SJ; Qi CB; Feng YQ; Yuan BF
    Anal Chem; 2015 Mar; 87(6):3445-52. PubMed ID: 25675106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic approaches for profiling cytosine methylation and hydroxymethylation.
    Wang T; Loo CE; Kohli RM
    Mol Metab; 2022 Mar; 57():101314. PubMed ID: 34375743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studying the epigenome using next generation sequencing.
    Ku CS; Naidoo N; Wu M; Soong R
    J Med Genet; 2011 Nov; 48(11):721-30. PubMed ID: 21825079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous single-molecule epigenetic imaging of DNA methylation and hydroxymethylation.
    Song CX; Diao J; Brunger AT; Quake SR
    Proc Natl Acad Sci U S A; 2016 Apr; 113(16):4338-43. PubMed ID: 27035984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic Modifications of Cytosine: Biophysical Properties, Regulation, and Function in Mammalian DNA.
    Hardwick JS; Lane AN; Brown T
    Bioessays; 2018 Mar; 40(3):. PubMed ID: 29369386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N6-methyladenine functions as a potential epigenetic mark in eukaryotes.
    Sun Q; Huang S; Wang X; Zhu Y; Chen Z; Chen D
    Bioessays; 2015 Nov; 37(11):1155-62. PubMed ID: 26293475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine.
    Cadet J; Wagner JR
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():18-35. PubMed ID: 24045206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.