These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 35900627)
1. Interpretable machine learning approach to analyze the effects of landscape and meteorological factors on mosquito occurrences in Seoul, South Korea. Lee DS; Lee DY; Park YS Environ Sci Pollut Res Int; 2023 Jan; 30(1):532-546. PubMed ID: 35900627 [TBL] [Abstract][Full Text] [Related]
2. Modeling Occurrence of Urban Mosquitos Based on Land Use Types and Meteorological Factors in Korea. Kwon YS; Bae MJ; Chung N; Lee YR; Hwang S; Kim SA; Choi YJ; Park YS Int J Environ Res Public Health; 2015 Oct; 12(10):13131-47. PubMed ID: 26492260 [TBL] [Abstract][Full Text] [Related]
3. Machine learning methods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan Manila, Philippines. Carvajal TM; Viacrusis KM; Hernandez LFT; Ho HT; Amalin DM; Watanabe K BMC Infect Dis; 2018 Apr; 18(1):183. PubMed ID: 29665781 [TBL] [Abstract][Full Text] [Related]
4. Machine learning-based analysis and prediction of meteorological factors and urban heatstroke diseases. Xu H; Guo S; Shi X; Wu Y; Pan J; Gao H; Tang Y; Han A Front Public Health; 2024; 12():1420608. PubMed ID: 39104885 [TBL] [Abstract][Full Text] [Related]
5. Integrated Forecasts Based on Public Health Surveillance and Meteorological Data Predict West Nile Virus in a High-Risk Region of North America. Wimberly MC; Davis JK; Hildreth MB; Clayton JL Environ Health Perspect; 2022 Aug; 130(8):87006. PubMed ID: 35972761 [TBL] [Abstract][Full Text] [Related]
6. Meteorological variables and mosquito monitoring are good predictors for infestation trends of Aedes aegypti, the vector of dengue, chikungunya and Zika. da Cruz Ferreira DA; Degener CM; de Almeida Marques-Toledo C; Bendati MM; Fetzer LO; Teixeira CP; Eiras ÁE Parasit Vectors; 2017 Feb; 10(1):78. PubMed ID: 28193291 [TBL] [Abstract][Full Text] [Related]
7. The relative importance of key meteorological factors affecting numbers of mosquito vectors of dengue fever. Liu Y; Wang X; Tang S; Cheke RA PLoS Negl Trop Dis; 2023 Apr; 17(4):e0011247. PubMed ID: 37053307 [TBL] [Abstract][Full Text] [Related]
8. Dengue disease dynamics are modulated by the combined influences of precipitation and landscape: A machine learning approach. Francisco ME; Carvajal TM; Ryo M; Nukazawa K; Amalin DM; Watanabe K Sci Total Environ; 2021 Oct; 792():148406. PubMed ID: 34157535 [TBL] [Abstract][Full Text] [Related]
9. Data-driven and interpretable machine-learning modeling to explore the fine-scale environmental determinants of malaria vectors biting rates in rural Burkina Faso. Taconet P; Porciani A; Soma DD; Mouline K; Simard F; Koffi AA; Pennetier C; Dabiré RK; Mangeas M; Moiroux N Parasit Vectors; 2021 Jun; 14(1):345. PubMed ID: 34187546 [TBL] [Abstract][Full Text] [Related]
10. Machine Learning Prediction Model of Tuberculosis Incidence Based on Meteorological Factors and Air Pollutants. Tang N; Yuan M; Chen Z; Ma J; Sun R; Yang Y; He Q; Guo X; Hu S; Zhou J Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36900920 [TBL] [Abstract][Full Text] [Related]
11. Association between hemorrhagic stroke occurrence and meteorological factors and pollutants. Han MH; Yi HJ; Ko Y; Kim YS; Lee YJ BMC Neurol; 2016 May; 16():59. PubMed ID: 27146603 [TBL] [Abstract][Full Text] [Related]
12. Meteorological factors cannot be ignored in machine learning-based methods for predicting dengue, a systematic review. Fang L; Hu W; Pan G Int J Biometeorol; 2024 Mar; 68(3):401-410. PubMed ID: 38150020 [TBL] [Abstract][Full Text] [Related]
13. A random forest model to predict heatstroke occurrence for heatwave in China. Wang Y; Song Q; Du Y; Wang J; Zhou J; Du Z; Li T Sci Total Environ; 2019 Feb; 650(Pt 2):3048-3053. PubMed ID: 30373081 [TBL] [Abstract][Full Text] [Related]
14. LSTM model for predicting the daily number of asthma patients in Seoul, South Korea, using meteorological and air pollution data. Chang M; Ku Y Environ Sci Pollut Res Int; 2023 Mar; 30(13):37440-37448. PubMed ID: 36574119 [TBL] [Abstract][Full Text] [Related]
15. Mapping the spatial distribution of the dengue vector Rahman MS; Pientong C; Zafar S; Ekalaksananan T; Paul RE; Haque U; Rocklöv J; Overgaard HJ One Health; 2021 Dec; 13():100358. PubMed ID: 34934797 [TBL] [Abstract][Full Text] [Related]
16. Airborne Bacterial Communities in Three East Asian Cities of China, South Korea, and Japan. Lee JY; Park EH; Lee S; Ko G; Honda Y; Hashizume M; Deng F; Yi SM; Kim H Sci Rep; 2017 Jul; 7(1):5545. PubMed ID: 28717138 [TBL] [Abstract][Full Text] [Related]
17. Regional classification of high PM Choi W; Song MY; Kim JB; Kim K; Cho C Environ Monit Assess; 2023 Aug; 195(9):1075. PubMed ID: 37615841 [TBL] [Abstract][Full Text] [Related]
18. Machine learning combined with the PMF model reveal the synergistic effects of sources and meteorological factors on PM Zhang Z; Xu B; Xu W; Wang F; Gao J; Li Y; Li M; Feng Y; Shi G Environ Res; 2022 Sep; 212(Pt B):113322. PubMed ID: 35460636 [TBL] [Abstract][Full Text] [Related]
19. Integrating dynamic models and neural networks to discover the mechanism of meteorological factors on Aedes population. Zhang M; Wang X; Tang S PLoS Comput Biol; 2024 Sep; 20(9):e1012499. PubMed ID: 39331695 [TBL] [Abstract][Full Text] [Related]
20. Mosquito abundance in relation to extremely high temperatures in urban and rural areas of Incheon Metropolitan City, South Korea from 2015 to 2020: an observational study. Lim AY; Cheong HK; Chung Y; Sim K; Kim JH Parasit Vectors; 2021 Oct; 14(1):559. PubMed ID: 34715902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]