BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 35900819)

  • 1. Engineering Electro- and Photocatalytic Carbon Materials for CO
    Badiani VM; Casadevall C; Miller M; Cobb SJ; Manuel RR; Pereira IAC; Reisner E
    J Am Chem Soc; 2022 Aug; 144(31):14207-14216. PubMed ID: 35900819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacing Formate Dehydrogenase with Metal Oxides for the Reversible Electrocatalysis and Solar-Driven Reduction of Carbon Dioxide.
    Miller M; Robinson WE; Oliveira AR; Heidary N; Kornienko N; Warnan J; Pereira IAC; Reisner E
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4601-4605. PubMed ID: 30724432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioelectrocatalytic Activity of W-Formate Dehydrogenase Covalently Immobilized on Functionalized Gold and Graphite Electrodes.
    Alvarez-Malmagro J; Oliveira AR; Gutiérrez-Sánchez C; Villajos B; Pereira IAC; Vélez M; Pita M; De Lacey AL
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11891-11900. PubMed ID: 33656858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and Selective Electrochemically Driven Enzyme-Catalyzed Reduction of Carbon Dioxide to Formate using Formate Dehydrogenase and an Artificial Cofactor.
    Jayathilake BS; Bhattacharya S; Vaidehi N; Narayanan SR
    Acc Chem Res; 2019 Mar; 52(3):676-685. PubMed ID: 30741524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of Functionally Compartmental Inorganic Photocatalyst-Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO
    Tian Y; Zhou Y; Zong Y; Li J; Yang N; Zhang M; Guo Z; Song H
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34795-34805. PubMed ID: 32805792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoreduction of CO
    Sokol KP; Robinson WE; Oliveira AR; Warnan J; Nowaczyk MM; Ruff A; Pereira IAC; Reisner E
    J Am Chem Soc; 2018 Dec; 140(48):16418-16422. PubMed ID: 30452863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding How the Rate of C-H Bond Cleavage Affects Formate Oxidation Catalysis by a Mo-Dependent Formate Dehydrogenase.
    Robinson WE; Bassegoda A; Blaza JN; Reisner E; Hirst J
    J Am Chem Soc; 2020 Jul; 142(28):12226-12236. PubMed ID: 32551568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking W-Formate Dehydrogenase Structural Changes During Catalysis and Enzyme Reoxidation.
    Vilela-Alves G; Manuel RR; Oliveira AR; Pereira IC; Romão MJ; Mota C
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-inspired CO
    Lodh J; Roy S
    J Inorg Biochem; 2022 Sep; 234():111903. PubMed ID: 35780763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase.
    Cordas CM; Campaniço M; Baptista R; Maia LB; Moura I; Moura JJG
    J Inorg Biochem; 2019 Jul; 196():110694. PubMed ID: 31005821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of formate dehydrogenase for improving conversion potential of carbon dioxide to formate.
    Shi HL; Yuan SW; Xi XQ; Xie YL; Yue C; Zhang YJ; Yao LG; Xue C; Tang CD
    World J Microbiol Biotechnol; 2023 Oct; 39(12):352. PubMed ID: 37864750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO
    Nielsen CF; Lange L; Meyer AS
    Biotechnol Adv; 2019 Nov; 37(7):107408. PubMed ID: 31200015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing Nanocaged Enzymes for Synergistic Catalysis of CO
    Jia Z; Dang J; Wen G; Zhang Y; Chen Z; Bai Z; Yang L
    Adv Sci (Weinh); 2023 Jul; 10(20):e2300752. PubMed ID: 37162224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic Electrosynthesis of Formic Acid through Carbon Dioxide Reduction in a Bioelectrochemical System: Effect of Immobilization and Carbonic Anhydrase Addition.
    Srikanth S; Alvarez-Gallego Y; Vanbroekhoven K; Pant D
    Chemphyschem; 2017 Nov; 18(22):3174-3181. PubMed ID: 28303650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of formate dehydrogenase in metal organic frameworks for enhanced conversion of carbon dioxide to formate.
    Rouf S; Greish YE; Al-Zuhair S
    Chemosphere; 2021 Mar; 267():128921. PubMed ID: 33190911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific and sustainable bioelectro-reduction of carbon dioxide to formate on a novel enzymatic cathode.
    Zhang L; Liu J; Ong J; Li SF
    Chemosphere; 2016 Nov; 162():228-34. PubMed ID: 27501309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidating Film Loss and the Role of Hydrogen Bonding of Adsorbed Redox Enzymes by Electrochemical Quartz Crystal Microbalance Analysis.
    Badiani VM; Cobb SJ; Wagner A; Oliveira AR; Zacarias S; Pereira IAC; Reisner E
    ACS Catal; 2022 Feb; 12(3):1886-1897. PubMed ID: 35573129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formate dehydrogenases for CO
    Calzadiaz-Ramirez L; Meyer AS
    Curr Opin Biotechnol; 2022 Feb; 73():95-100. PubMed ID: 34348217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities.
    Cerqueira NM; Gonzalez PJ; Fernandes PA; Moura JJ; Ramos MJ
    Acc Chem Res; 2015 Nov; 48(11):2875-84. PubMed ID: 26509703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans.
    de Bok FA; Hagedoorn PL; Silva PJ; Hagen WR; Schiltz E; Fritsche K; Stams AJ
    Eur J Biochem; 2003 Jun; 270(11):2476-85. PubMed ID: 12755703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.