These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 35900846)
1. Will climate change cause the global peatland to expand or contract? Evidence from the habitat shift pattern of Sphagnum mosses. Ma XY; Xu H; Cao ZY; Shu L; Zhu RL Glob Chang Biol; 2022 Nov; 28(21):6419-6432. PubMed ID: 35900846 [TBL] [Abstract][Full Text] [Related]
2. Widespread recent ecosystem state shifts in high-latitude peatlands of northeastern Canada and implications for carbon sequestration. Magnan G; Sanderson NK; Piilo S; Pratte S; Väliranta M; van Bellen S; Zhang H; Garneau M Glob Chang Biol; 2022 Mar; 28(5):1919-1934. PubMed ID: 34882914 [TBL] [Abstract][Full Text] [Related]
3. Climate drivers alter nitrogen availability in surface peat and decouple N Petro C; Carrell AA; Wilson RM; Duchesneau K; Noble-Kuchera S; Song T; Iversen CM; Childs J; Schwaner G; Chanton JP; Norby RJ; Hanson PJ; Glass JB; Weston DJ; Kostka JE Glob Chang Biol; 2023 Jun; 29(11):3159-3176. PubMed ID: 36999440 [TBL] [Abstract][Full Text] [Related]
4. Sphagnum mosses, the impact of disturbances and anthropogenic management actions on their ecological role in CO Pacheco-Cancino PA; Carrillo-López RF; Sepulveda-Jauregui A; Somos-Valenzuela MA Glob Chang Biol; 2024 Jan; 30(1):e16972. PubMed ID: 37882506 [TBL] [Abstract][Full Text] [Related]
5. Consistent centennial-scale change in European sub-Arctic peatland vegetation toward Sphagnum dominance-Implications for carbon sink capacity. Piilo SR; Väliranta MM; Amesbury MJ; Aquino-López MA; Charman DJ; Gallego-Sala A; Garneau M; Koroleva N; Kärppä M; Laine AM; Sannel ABK; Tuittila ES; Zhang H Glob Chang Biol; 2023 Mar; 29(6):1530-1544. PubMed ID: 36495084 [TBL] [Abstract][Full Text] [Related]
6. Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models. Oke TA; Hager HA PLoS One; 2017; 12(4):e0175978. PubMed ID: 28426754 [TBL] [Abstract][Full Text] [Related]
7. Rapid loss of an ecosystem engineer: Norby RJ; Childs J; Hanson PJ; Warren JM Ecol Evol; 2019 Nov; 9(22):12571-12585. PubMed ID: 31788198 [No Abstract] [Full Text] [Related]
8. Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits. Jassey VEJ; Signarbieux C Glob Chang Biol; 2019 Nov; 25(11):3859-3870. PubMed ID: 31502398 [TBL] [Abstract][Full Text] [Related]
9. Spatio-temporal trends of nitrogen deposition and climate effects on Sphagnum productivity in European peatlands. Granath G; Limpens J; Posch M; Mücher S; de Vries W Environ Pollut; 2014 Apr; 187():73-80. PubMed ID: 24457298 [TBL] [Abstract][Full Text] [Related]
10. Range change evolution of peat mosses (Sphagnum) within and between climate zones. Shaw AJ; Carter BE; Aguero B; da Costa DP; Crowl AA Glob Chang Biol; 2019 Jan; 25(1):108-120. PubMed ID: 30346105 [TBL] [Abstract][Full Text] [Related]
11. Vascular plants regulate responses of boreal peatland Sphagnum to climate warming and nitrogen addition. Le TB; Wu J; Gong Y Sci Total Environ; 2022 May; 819():152077. PubMed ID: 34856288 [TBL] [Abstract][Full Text] [Related]
12. Plant succession and geochemical indices in immature peatlands in the Changbai Mountains, northeastern region of China: Implications for climate change and peatland development. Zhang L; Gałka M; Kumar A; Liu M; Knorr KH; Yu ZG Sci Total Environ; 2021 Jun; 773():143776. PubMed ID: 33261873 [TBL] [Abstract][Full Text] [Related]
13. Methane production and oxidation potentials along a fen-bog gradient from southern boreal to subarctic peatlands in Finland. Zhang H; Tuittila ES; Korrensalo A; Laine AM; Uljas S; Welti N; Kerttula J; Maljanen M; Elliott D; Vesala T; Lohila A Glob Chang Biol; 2021 Sep; 27(18):4449-4464. PubMed ID: 34091981 [TBL] [Abstract][Full Text] [Related]
14. Decreased carbon accumulation feedback driven by climate-induced drying of two southern boreal bogs over recent centuries. Zhang H; Väliranta M; Piilo S; Amesbury MJ; Aquino-López MA; Roland TP; Salminen-Paatero S; Paatero J; Lohila A; Tuittila ES Glob Chang Biol; 2020 Apr; 26(4):2435-2448. PubMed ID: 31961026 [TBL] [Abstract][Full Text] [Related]
15. Response of C and N cycles to N fertilization in Sphagnum and Molinia-dominated peat mesocosms. Leroy F; Gogo S; Guimbaud C; Francez AJ; Zocatelli R; Défarge C; Bernard-Jannin L; Hu Z; Laggoun-Défarge F J Environ Sci (China); 2019 Mar; 77():264-272. PubMed ID: 30573090 [TBL] [Abstract][Full Text] [Related]
16. Linkages between Sphagnum metabolites and peatland CO Sytiuk A; Hamard S; Céréghino R; Dorrepaal E; Geissel H; Küttim M; Lamentowicz M; Tuittila ES; Jassey VEJ New Phytol; 2023 Feb; 237(4):1164-1178. PubMed ID: 36336780 [TBL] [Abstract][Full Text] [Related]
17. Impact of warming and reduced precipitation on morphology and chlorophyll concentration in peat mosses (Sphagnum angustifolium and S. fallax). Rastogi A; Antala M; Gąbka M; Rosadziński S; Stróżecki M; Brestic M; Juszczak R Sci Rep; 2020 May; 10(1):8592. PubMed ID: 32451474 [TBL] [Abstract][Full Text] [Related]
18. Natural selection on a carbon cycling trait drives ecosystem engineering by Piatkowski BT; Yavitt JB; Turetsky MR; Shaw AJ Proc Biol Sci; 2021 Aug; 288(1957):20210609. PubMed ID: 34403639 [No Abstract] [Full Text] [Related]
19. Intra- and interspecific variation in spectral properties of dominant Salko SS; Juola J; Burdun I; Vasander H; Rautiainen M Ecol Evol; 2023 Jun; 13(6):e10197. PubMed ID: 37325720 [TBL] [Abstract][Full Text] [Related]
20. Structure and Functions of Endophytic Bacterial Communities Associated with Sphagnum Mosses and Their Drivers in Two Different Nutrient Types of Peatlands. Wang Y; Xue D; Chen X; Qiu Q; Chen H Microb Ecol; 2024 Feb; 87(1):47. PubMed ID: 38407642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]