These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35901067)

  • 1. Mesostats-A multiplexed, low-cost, do-it-yourself continuous culturing system for experimental evolution of mesocosms.
    Hansson EM; Childs DZ; Beckerman AP
    PLoS One; 2022; 17(7):e0272052. PubMed ID: 35901067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The enduring utility of continuous culturing in experimental evolution.
    Gresham D; Dunham MJ
    Genomics; 2014 Dec; 104(6 Pt A):399-405. PubMed ID: 25281774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and Validation of A Low-cost, Small-scale, Multiplex Continuous Culturing System for Microorganisms.
    Tonoyan L; Guihéneuf F; Friel R; O'Flaherty V
    Bio Protoc; 2020 Nov; 10(21):e3813. PubMed ID: 33659466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The omnistat: A flexible continuous-culture system for prolonged experimental evolution.
    Ekkers DM; Branco Dos Santos F; Mallon CA; Bruggeman F; van Doorn GS
    Methods Ecol Evol; 2020 Aug; 11(8):932-942. PubMed ID: 32999708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and use of multiplexed chemostat arrays.
    Miller AW; Befort C; Kerr EO; Dunham MJ
    J Vis Exp; 2013 Feb; (72):e50262. PubMed ID: 23462663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring small-scale chemostats to scale up microbial processes: 3-hydroxypropionic acid production in S. cerevisiae.
    Lis AV; Schneider K; Weber J; Keasling JD; Jensen MK; Klein T
    Microb Cell Fact; 2019 Mar; 18(1):50. PubMed ID: 30857529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.
    Gresham D; Desai MM; Tucker CM; Jenq HT; Pai DA; Ward A; DeSevo CG; Botstein D; Dunham MJ
    PLoS Genet; 2008 Dec; 4(12):e1000303. PubMed ID: 19079573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The functional basis of adaptive evolution in chemostats.
    Gresham D; Hong J
    FEMS Microbiol Rev; 2015 Jan; 39(1):2-16. PubMed ID: 25098268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemostat Culture for Yeast Physiology and Experimental Evolution.
    Dunham MJ; Kerr EO; Miller AW; Payen C
    Cold Spring Harb Protoc; 2017 Jul; 2017(7):pdb.top077610. PubMed ID: 28679718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beware batch culture: Seasonality and niche construction predicted to favor bacterial adaptive diversification.
    Rocabert C; Knibbe C; Consuegra J; Schneider D; Beslon G
    PLoS Comput Biol; 2017 Mar; 13(3):e1005459. PubMed ID: 28358919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing a low-cost milliliter-scale chemostat array for precise control of cellular growth.
    Skelding D; Hart SFM; Vidyasagar T; Pozhitkov AE; Shou W
    Quant Biol; 2018 Jun; 6(2):129-141. PubMed ID: 31598380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemostat-based micro-array analysis in baker's yeast.
    Daran-Lapujade P; Daran JM; van Maris AJ; de Winde JH; Pronk JT
    Adv Microb Physiol; 2009; 54():257-311. PubMed ID: 18929070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charting microbial phenotypes in multiplex nanoliter batch bioreactors.
    Dai J; Yoon SH; Sim HY; Yang YS; Oh TK; Kim JF; Hong JW
    Anal Chem; 2013 Jun; 85(12):5892-9. PubMed ID: 23581968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Implementation of an Automated Illuminating, Culturing, and Sampling System for Microbial Optogenetic Applications.
    Stewart CJ; McClean MN
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed chemostat system for quantification of biodiversity and ecosystem functioning in anaerobic digestion.
    Plouchart D; Milferstedt K; Guizard G; Latrille E; Hamelin J
    PLoS One; 2018; 13(3):e0193748. PubMed ID: 29518106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of bicarbonate and nonbicarbonate buffer systems in batch and continuous flow bioreactors for articular cartilage tissue engineering.
    Khan AA; Surrao DC
    Tissue Eng Part C Methods; 2012 May; 18(5):358-68. PubMed ID: 22092352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemostat Culture for Yeast Experimental Evolution.
    Payen C; Dunham MJ
    Cold Spring Harb Protoc; 2017 Jul; 2017(7):pdb.prot089011. PubMed ID: 28679700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic model of temperature impact on cell viability and major product formation during fed-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae.
    Amillastre E; Aceves-Lara CA; Uribelarrea JL; Alfenore S; Guillouet SE
    Bioresour Technol; 2012 Aug; 117():242-50. PubMed ID: 22617033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Cell Technologies to Understand the Mechanisms of Cellular Adaptation in Chemostats.
    Wright NR; Rønnest NP; Sonnenschein N
    Front Bioeng Biotechnol; 2020; 8():579841. PubMed ID: 33392163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-silico media optimization for continuous cultures using genome scale metabolic networks: The case of CHO-K1.
    Pérez-Fernández BA; Fernandez-de-Cossio-Diaz J; Boggiano T; León K; Mulet R
    Biotechnol Bioeng; 2021 May; 118(5):1884-1897. PubMed ID: 33554345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.