These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35901206)

  • 1. Adsorption free energy predicts amyloid protein nucleation rates.
    Toprakcioglu Z; Kamada A; Michaels TCT; Xie M; Krausser J; Wei J; Saric A; Vendruscolo M; Knowles TPJ
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2109718119. PubMed ID: 35901206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a molecular theory of early and late events in monomer to amyloid fibril formation.
    Straub JE; Thirumalai D
    Annu Rev Phys Chem; 2011; 62():437-63. PubMed ID: 21219143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phage display and kinetic selection of antibodies that specifically inhibit amyloid self-replication.
    Munke A; Persson J; Weiffert T; De Genst E; Meisl G; Arosio P; Carnerup A; Dobson CM; Vendruscolo M; Knowles TPJ; Linse S
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6444-6449. PubMed ID: 28584111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gallic acid oxidation products alter the formation pathway of insulin amyloid fibrils.
    Sakalauskas A; Ziaunys M; Smirnovas V
    Sci Rep; 2020 Sep; 10(1):14466. PubMed ID: 32879381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleation of α-Synuclein Amyloid Fibrils Induced by Cross-Interaction with β-Hairpin Peptides Derived from Immunoglobulin Light Chains.
    Heid LF; Kupreichyk T; Schützmann MP; Schneider W; Stoldt M; Hoyer W
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates.
    Ilie IM; Caflisch A
    Chem Rev; 2019 Jun; 119(12):6956-6993. PubMed ID: 30973229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale Exploration of Concentration-Dependent Amyloid-β(16-21) Amyloid Nucleation.
    Tang X; Han W
    J Phys Chem Lett; 2022 Jun; 13(22):5009-5016. PubMed ID: 35649244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Mechanisms of Inhibition of Protein Amyloid Fibril Formation: Evidence and Perspectives Based on Kinetic Models.
    Sedov I; Khaibrakhmanova D
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloid formation of fish β-parvalbumin involves primary nucleation triggered by disulfide-bridged protein dimers.
    Werner TER; Bernson D; Esbjörner EK; Rocha S; Wittung-Stafshede P
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27997-28004. PubMed ID: 33093204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleation-dependent Aggregation Kinetics of Yeast Sup35 Fragment GNNQQNY.
    Burra G; Maina MB; Serpell LC; Thakur AK
    J Mol Biol; 2021 Feb; 433(3):166732. PubMed ID: 33279578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mammalian amyloidogenic proteins promote prion nucleation in yeast.
    Chandramowlishwaran P; Sun M; Casey KL; Romanyuk AV; Grizel AV; Sopova JV; Rubel AA; Nussbaum-Krammer C; Vorberg IM; Chernoff YO
    J Biol Chem; 2018 Mar; 293(9):3436-3450. PubMed ID: 29330303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of protofibril elongation and association involved in Aβ42 peptide aggregation in Alzheimer's disease.
    Ghosh P; Kumar A; Datta B; Rangachari V
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S24. PubMed ID: 20946608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How our bodies fight amyloidosis: effects of physiological factors on pathogenic aggregation of amyloidogenic proteins.
    Huang L; Liu X; Cheng B; Huang K
    Arch Biochem Biophys; 2015 Feb; 568():46-55. PubMed ID: 25615529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid membranes catalyse the fibril formation of the amyloid-β (1-42) peptide through lipid-fibril interactions that reinforce secondary pathways.
    Lindberg DJ; Wesén E; Björkeroth J; Rocha S; Esbjörner EK
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1921-1929. PubMed ID: 28564579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fitting neurological protein aggregation kinetic data via a 2-step, minimal/"Ockham's razor" model: the Finke-Watzky mechanism of nucleation followed by autocatalytic surface growth.
    Morris AM; Watzky MA; Agar JN; Finke RG
    Biochemistry; 2008 Feb; 47(8):2413-27. PubMed ID: 18247636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crucial role of nonspecific interactions in amyloid nucleation.
    Šarić A; Chebaro YC; Knowles TP; Frenkel D
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17869-74. PubMed ID: 25453085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic profiling of therapeutic strategies for inhibiting the formation of amyloid oligomers.
    Michaels TCT; Dear AJ; Cohen SIA; Vendruscolo M; Knowles TPJ
    J Chem Phys; 2022 Apr; 156(16):164904. PubMed ID: 35490011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of aggregation and fibril formation of the amyloidogenic N-terminal fragment of apolipoprotein A-I.
    Mizuguchi C; Nakagawa M; Namba N; Sakai M; Kurimitsu N; Suzuki A; Fujita K; Horiuchi S; Baba T; Ohgita T; Nishitsuji K; Saito H
    J Biol Chem; 2019 Sep; 294(36):13515-13524. PubMed ID: 31341020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.