These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 35901269)
1. Sun S; Wang R; Pandelia ME Biochemistry; 2022 Sep; 61(17):1801-1809. PubMed ID: 35901269 [TBL] [Abstract][Full Text] [Related]
2. HD-[HD-GYP] Phosphodiesterases: Activities and Evolutionary Diversification within the HD-GYP Family. Sun S; Pandelia ME Biochemistry; 2020 Jun; 59(25):2340-2350. PubMed ID: 32496757 [TBL] [Abstract][Full Text] [Related]
3. Novel Mechanism for Cyclic Dinucleotide Degradation Revealed by Structural Studies of Vibrio Phosphodiesterase V-cGAP3. Deng MJ; Tao J; E C; Ye ZY; Jiang Z; Yu J; Su XD J Mol Biol; 2018 Dec; 430(24):5080-5093. PubMed ID: 30365951 [TBL] [Abstract][Full Text] [Related]
4. Structures of c-di-GMP/cGAMP degrading phosphodiesterase VcEAL: identification of a novel conformational switch and its implication. Yadav M; Pal K; Sen U Biochem J; 2019 Nov; 476(21):3333-3353. PubMed ID: 31647518 [TBL] [Abstract][Full Text] [Related]
5. Gas-Selective Catalytic Regulation by a Newly Identified Globin-Coupled Sensor Phosphodiesterase Containing an HD-GYP Domain from the Human Pathogen Kitanishi K; Aoyama N; Shimonaka M Biochemistry; 2024 Feb; 63(4):523-532. PubMed ID: 38264987 [TBL] [Abstract][Full Text] [Related]
6. Sequence Conservation, Domain Architectures, and Phylogenetic Distribution of the HD-GYP Type c-di-GMP Phosphodiesterases. Galperin MY; Chou SH J Bacteriol; 2022 Apr; 204(4):e0056121. PubMed ID: 34928179 [TBL] [Abstract][Full Text] [Related]
7. The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases. Lovering AL; Capeness MJ; Lambert C; Hobley L; Sockett RE mBio; 2011; 2(5):. PubMed ID: 21990613 [TBL] [Abstract][Full Text] [Related]
8. An HD-GYP cyclic di-guanosine monophosphate phosphodiesterase with a non-heme diiron-carboxylate active site. Miner KD; Klose KE; Kurtz DM Biochemistry; 2013 Aug; 52(32):5329-31. PubMed ID: 23883166 [TBL] [Abstract][Full Text] [Related]
9. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP. Miner KD; Kurtz DM Biochemistry; 2016 Feb; 55(6):970-9. PubMed ID: 26786892 [TBL] [Abstract][Full Text] [Related]
10. Phosphodiesterase EdpX1 Promotes Xanthomonas oryzae pv. oryzae Virulence, Exopolysaccharide Production, and Biofilm Formation. Xue D; Tian F; Yang F; Chen H; Yuan X; Yang CH; Chen Y; Wang Q; He C Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217836 [TBL] [Abstract][Full Text] [Related]
11. c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. Bordeleau E; Fortier LC; Malouin F; Burrus V PLoS Genet; 2011 Mar; 7(3):e1002039. PubMed ID: 21483756 [TBL] [Abstract][Full Text] [Related]
12. A pGpG-specific phosphodiesterase regulates cyclic di-GMP signaling in Vibrio cholerae. Heo K; Lee JW; Jang Y; Kwon S; Lee J; Seok C; Ha NC; Seok YJ J Biol Chem; 2022 Mar; 298(3):101626. PubMed ID: 35074425 [TBL] [Abstract][Full Text] [Related]
13. Identification and Characterization of a Redox Sensor Phosphodiesterase from Kitanishi K; Igarashi J; Matsuoka A; Unno M Biochemistry; 2020 Mar; 59(8):983-991. PubMed ID: 32045213 [TBL] [Abstract][Full Text] [Related]
14. Intestinal GPS: bile and bicarbonate control cyclic di-GMP to provide Vibrio cholerae spatial cues within the small intestine. Koestler BJ; Waters CM Gut Microbes; 2014; 5(6):775-80. PubMed ID: 25621620 [TBL] [Abstract][Full Text] [Related]
15. Role of cyclic Di-GMP during el tor biotype Vibrio cholerae infection: characterization of the in vivo-induced cyclic Di-GMP phosphodiesterase CdpA. Tamayo R; Schild S; Pratt JT; Camilli A Infect Immun; 2008 Apr; 76(4):1617-27. PubMed ID: 18227161 [TBL] [Abstract][Full Text] [Related]
16. Identification and characterization of cyclic diguanylate signaling systems controlling rugosity in Vibrio cholerae. Beyhan S; Odell LS; Yildiz FH J Bacteriol; 2008 Nov; 190(22):7392-405. PubMed ID: 18790873 [TBL] [Abstract][Full Text] [Related]
17. Phenotypic-genotypic analysis of GGDEF/EAL/HD-GYP domain-encoding genes in Pseudomonas putida. Nie H; Xiao Y; He J; Liu H; Nie L; Chen W; Huang Q Environ Microbiol Rep; 2020 Feb; 12(1):38-48. PubMed ID: 31691501 [TBL] [Abstract][Full Text] [Related]
18. Identification and characterization of a phosphodiesterase that inversely regulates motility and biofilm formation in Vibrio cholerae. Liu X; Beyhan S; Lim B; Linington RG; Yildiz FH J Bacteriol; 2010 Sep; 192(18):4541-52. PubMed ID: 20622061 [TBL] [Abstract][Full Text] [Related]
19. Structural basis of functional diversification of the HD-GYP domain revealed by the Pseudomonas aeruginosa PA4781 protein, which displays an unselective bimetallic binding site. Rinaldo S; Paiardini A; Stelitano V; Brunotti P; Cervoni L; Fernicola S; Protano C; Vitali M; CutruzzolĂ F; Giardina G J Bacteriol; 2015 Apr; 197(8):1525-35. PubMed ID: 25691523 [TBL] [Abstract][Full Text] [Related]
20. Progress in Understanding the Molecular Basis Underlying Functional Diversification of Cyclic Dinucleotide Turnover Proteins. Römling U; Liang ZX; Dow JM J Bacteriol; 2017 Mar; 199(5):. PubMed ID: 28031279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]