These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35901449)

  • 1. GLOBE: a contrastive learning-based framework for integrating single-cell transcriptome datasets.
    Yan X; Zheng R; Li M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CLAIRE: contrastive learning-based batch correction framework for better balance between batch mixing and preservation of cellular heterogeneity.
    Yan X; Zheng R; Wu F; Li M
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36821425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. spatiAlign: an unsupervised contrastive learning model for data integration of spatially resolved transcriptomics.
    Zhang C; Liu L; Zhang Y; Li M; Fang S; Kang Q; Chen A; Xu X; Zhang Y; Li Y
    Gigascience; 2024 Jan; 13():. PubMed ID: 39028588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell multi-omics integration for unpaired data by a siamese network with graph-based contrastive loss.
    Liu C; Wang L; Liu Z
    BMC Bioinformatics; 2023 Jan; 24(1):5. PubMed ID: 36600199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable batch-correction approach for integrating large-scale single-cell transcriptomes.
    Shen X; Shen H; Wu D; Feng M; Hu J; Liu J; Yang Y; Yang M; Li Y; Shi L; Chen K; Li X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35947966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating single-cell RNA-seq datasets with substantial batch effects.
    Hrovatin K; Moinfar AA; Zappia L; Lapuerta AT; Lengerich B; Kellis M; Theis FJ
    bioRxiv; 2024 Feb; ():. PubMed ID: 37961672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. deepMNN: Deep Learning-Based Single-Cell RNA Sequencing Data Batch Correction Using Mutual Nearest Neighbors.
    Zou B; Zhang T; Zhou R; Jiang X; Yang H; Jin X; Bai Y
    Front Genet; 2021; 12():708981. PubMed ID: 34447413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration and transfer learning of single-cell transcriptomes via cFIT.
    Peng M; Li Y; Wamsley B; Wei Y; Roeder K
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33658382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A benchmark of batch-effect correction methods for single-cell RNA sequencing data.
    Tran HTN; Ang KS; Chevrier M; Zhang X; Lee NYS; Goh M; Chen J
    Genome Biol; 2020 Jan; 21(1):12. PubMed ID: 31948481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matching single cells across modalities with contrastive learning and optimal transport.
    Gossi F; Pati P; Chouvardas P; Martinelli AL; Kruithof-de Julio M; Rapsomaniki MA
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutual Information Driven Equivariant Contrastive Learning for 3D Action Representation Learning.
    Lin L; Zhang J; Liu J
    IEEE Trans Image Process; 2024; 33():1883-1897. PubMed ID: 38451760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting cell types with supervised contrastive learning on cells and their types.
    Heryanto YD; Zhang YZ; Imoto S
    Sci Rep; 2024 Jan; 14(1):430. PubMed ID: 38172501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Batch correction of single-cell sequencing data via an autoencoder architecture.
    Danino R; Nachman I; Sharan R
    Bioinform Adv; 2024; 4(1):vbad186. PubMed ID: 38213820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking clustering, alignment, and integration methods for spatial transcriptomics.
    Hu Y; Xie M; Li Y; Rao M; Shen W; Luo C; Qin H; Baek J; Zhou XM
    Genome Biol; 2024 Aug; 25(1):212. PubMed ID: 39123269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trade-off between conservation of biological variation and batch effect removal in deep generative modeling for single-cell transcriptomics.
    Li H; McCarthy DJ; Shim H; Wei S
    BMC Bioinformatics; 2022 Nov; 23(1):460. PubMed ID: 36329399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BATMAN: Fast and Accurate Integration of Single-Cell RNA-Seq Datasets via Minimum-Weight Matching.
    Mandric I; Hill BL; Freund MK; Thompson M; Halperin E
    iScience; 2020 Jun; 23(6):101185. PubMed ID: 32504875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MAT2: manifold alignment of single-cell transcriptomes with cell triplets.
    Zhang J; Zhang X; Wang Y; Zeng F; Zhao XM
    Bioinformatics; 2021 Oct; 37(19):3263-3269. PubMed ID: 33974010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of single-cell proteomic datasets through distinctive proteins in cell clusters.
    Koca MB; Sevilgen FE
    Proteomics; 2024 Apr; 24(7):e2300282. PubMed ID: 38135888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unified cross-modality integration and analysis of T cell receptors and T cell transcriptomes by low-resource-aware representation learning.
    Gao Y; Dong K; Gao Y; Jin X; Yang J; Yan G; Liu Q
    Cell Genom; 2024 May; 4(5):100553. PubMed ID: 38688285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis.
    Xu X; Yu X; Hu G; Wang K; Zhang J; Li X
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35821114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.