These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1192 related articles for article (PubMed ID: 35901457)

  • 21. EnTSSR: A Weighted Ensemble Learning Method to Impute Single-Cell RNA Sequencing Data.
    Lu F; Lin Y; Yuan C; Zhang XF; Ou-Yang L
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2781-2787. PubMed ID: 34495837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel graph-based k-partitioning approach improves the detection of gene-gene correlations by single-cell RNA sequencing.
    Xu H; Hu Y; Zhang X; Aouizerat BE; Yan C; Xu K
    BMC Genomics; 2022 Jan; 23(1):35. PubMed ID: 34996359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion.
    Pan X; Li Z; Qin S; Yu M; Hu H
    BMC Genomics; 2021 Nov; 22(1):860. PubMed ID: 34844559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imputation method for single-cell RNA-seq data using neural topic model.
    Qi Y; Han S; Tang L; Liu L
    Gigascience; 2022 Dec; 12():. PubMed ID: 38000911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. scINRB: single-cell gene expression imputation with network regularization and bulk RNA-seq data.
    Kang Y; Zhang H; Guan J
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38600665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ScGSLC: An unsupervised graph similarity learning framework for single-cell RNA-seq data clustering.
    Li J; Jiang W; Han H; Liu J; Liu B; Wang Y
    Comput Biol Chem; 2021 Feb; 90():107415. PubMed ID: 33307360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SMURF: embedding single-cell RNA-seq data with matrix factorization preserving self-consistency.
    Pu J; Wang B; Liu X; Chen L; Li SC
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sparsity-Penalized Stacked Denoising Autoencoders for Imputing Single-Cell RNA-Seq Data.
    Chi W; Deng M
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32403260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Attention-based deep clustering method for scRNA-seq cell type identification.
    Li S; Guo H; Zhang S; Li Y; Li M
    PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A systematic evaluation of single-cell RNA-sequencing imputation methods.
    Hou W; Ji Z; Ji H; Hicks SC
    Genome Biol; 2020 Aug; 21(1):218. PubMed ID: 32854757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering.
    Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SinCWIm: An imputation method for single-cell RNA sequence dropouts using weighted alternating least squares.
    Gong L; Cui X; Liu Y; Lin C; Gao Z
    Comput Biol Med; 2024 Mar; 171():108225. PubMed ID: 38442556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correlation Imputation for Single-Cell RNA-seq.
    Gan L; Vinci G; Allen GI
    J Comput Biol; 2022 May; 29(5):465-482. PubMed ID: 35325552
    [No Abstract]   [Full Text] [Related]  

  • 36. DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data.
    Arisdakessian C; Poirion O; Yunits B; Zhu X; Garmire LX
    Genome Biol; 2019 Oct; 20(1):211. PubMed ID: 31627739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.
    Qiu Y; Yan C; Zhao P; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imputing single-cell RNA-seq data by considering cell heterogeneity and prior expression of dropouts.
    Zhang L; Zhang S
    J Mol Cell Biol; 2021 Apr; 13(1):29-40. PubMed ID: 33002136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-cell RNA sequencing data analysis utilizing multi-type graph neural networks.
    Xu L; Li Z; Ren J; Liu S; Xu Y
    Comput Biol Med; 2024 Sep; 179():108921. PubMed ID: 39059210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 60.