These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35901726)

  • 1. Fluorescence temperature sensing of NaYF
    Meng M; Zhang T; Wang J; Cheng Z; Yang J; Qiao X; Wen J; Resch-Genger U; Ou J
    Nanotechnology; 2022 Aug; 33(45):. PubMed ID: 35901726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-sensitivity NaYF
    Cheng Z; Meng M; Wang J; Li Z; He J; Liang H; Qiao X; Liu Y; Ou J
    Nanoscale; 2023 Jul; 15(26):11179-11189. PubMed ID: 37340955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant enhancement of upconversion emission in (NaYF₄:Nd³⁺/Yb³⁺/Ho³⁺)/(NaYF₄:Nd³⁺/Yb³⁺) core/shell nanoparticles excited at 808 nm.
    Huang X
    Opt Lett; 2015 Aug; 40(15):3599-602. PubMed ID: 26258367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Tm
    Chen G; Lei R; Huang F; Wang H; Zhao S; Xu S
    Luminescence; 2018 Nov; 33(7):1262-1267. PubMed ID: 30338620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of crystal structure on optical properties and temperature sensing behavior of NaYF
    Dubey C; Yadav A; Baloni D; Kachhap S; Singh SK; Singh AK
    RSC Adv; 2023 Jul; 13(30):20975-20983. PubMed ID: 37441037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Mn
    Qiang Q; Wang Y
    Front Chem; 2019; 7():425. PubMed ID: 31245360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monodisperse Core-Shell NaYF
    Kostiv U; Engstová H; Krajnik B; Šlouf M; Proks V; Podhorodecki A; Ježek P; Horák D
    Front Chem; 2020; 8():497. PubMed ID: 32596210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro temperature sensing with up-conversion NaYF
    Sarmanova OE; Burikov SA; Laptinskiy KA; Kotova OD; Filippova EA; Dolenko TA
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Nov; 241():118627. PubMed ID: 32623299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Er
    Chen D; Xu M; Ma M; Huang P
    Dalton Trans; 2017 Nov; 46(44):15373-15385. PubMed ID: 29072734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the upconversion luminescence and photothermal conversion properties of ∼800nm excitable core/shell nanoparticles by dye molecule sensitization.
    Shao Q; Li X; Hua P; Zhang G; Dong Y; Jiang J
    J Colloid Interface Sci; 2017 Jan; 486():121-127. PubMed ID: 27697649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence.
    Li X; Guo Z; Zhao T; Lu Y; Zhou L; Zhao D; Zhang F
    Angew Chem Int Ed Engl; 2016 Feb; 55(7):2464-9. PubMed ID: 26762564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual functional NaYF
    Shi Z; Duan Y; Zhu X; Wang Q; Li D; Hu K; Feng W; Li F; Xu C
    Nanotechnology; 2018 Mar; 29(9):094001. PubMed ID: 29283363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of NaYF4, NaLuF4 and NaGdF4-based upconversion nanocrystals with hydro (solvo) thermal methods.
    Yin D; Song K; Ou Y; Wang C; Liu B; Wu M
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4162-7. PubMed ID: 23862466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of monodisperse NaYF4:Yb, Tm@SiO2 nanoparticles with intense ultraviolet upconversion luminescence.
    Shi F; Zhai X; Zheng K; Zhao D; Qin W
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9912-5. PubMed ID: 22413320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Rare-Earth Nanomaterials Ag-Doped NaYF
    Zhang W; Zang Y; Lu Y; Han J; Xiong Q; Xiong J
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double NIR laser stimulation and enhancing the thermal sensitivity of Er
    Ba Z; Hu M; Zhao Y; Wang Y; Wang J; Zhang Z
    Nanotechnology; 2018 Aug; 29(35):355704. PubMed ID: 29863482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-sensitive temperature sensing based on thermal-enhanced emission and non-thermally coupled energy levels of white upconversion luminescence system.
    Xiao Q; Yin X; Dong X; Zhou N; Wang Y; Zhang X; Luo X; Song Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121608. PubMed ID: 35843059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of core-shell nanoparticles based on interfacial energy transfer for red emission and highly sensitive temperature sensing.
    Yin X; Xiao Q; Lv L; Wu X; Zhao Z; He J; Dong X; Tian Y; Luo X
    Dalton Trans; 2022 Nov; 51(42):16274-16281. PubMed ID: 36218139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on optical temperature sensing behaviour
    Shahzad MK; Farooq U; Raza A; Abbas G; Ikram M; Zhang Y
    RSC Adv; 2021 Nov; 11(58):36569-36576. PubMed ID: 35494388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4:Yb,Tm/NaGdF4 core-shell upconverting nanoparticles to gold nanorods.
    Chen H; Guan Y; Wang S; Ji Y; Gong M; Wang L
    Langmuir; 2014 Nov; 30(43):13085-91. PubMed ID: 25296290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.