These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 35902573)
21. Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders. Rousseau ME; Lefèvre T; Pézolet M Biomacromolecules; 2009 Oct; 10(10):2945-53. PubMed ID: 19785404 [TBL] [Abstract][Full Text] [Related]
22. Natural spider silk nanofibrils produced by assembling molecules or disassembling fibers. Perera D; Li L; Walsh C; Silliman J; Xiong Y; Wang Q; Schniepp HC Acta Biomater; 2023 Sep; 168():323-332. PubMed ID: 37414111 [TBL] [Abstract][Full Text] [Related]
23. An experimental confirmation of thermal transitions in native and regenerated spider silks. Torres FG; Troncoso OP; Torres C; Cabrejos W Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1432-7. PubMed ID: 23827592 [TBL] [Abstract][Full Text] [Related]
24. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Hagn F; Eisoldt L; Hardy JG; Vendrely C; Coles M; Scheibel T; Kessler H Nature; 2010 May; 465(7295):239-42. PubMed ID: 20463741 [TBL] [Abstract][Full Text] [Related]
25. Multi-Point Nanoindentation Method to Determine Mechanical Anisotropy in Nanofibrillar Thin Films. Perera D; Wang Q; Schniepp HC Small; 2022 Jul; 18(30):e2202065. PubMed ID: 35780468 [TBL] [Abstract][Full Text] [Related]
26. Secondary Structure Transition and Critical Stress for a Model of Spider Silk Assembly. Giesa T; Perry CC; Buehler MJ Biomacromolecules; 2016 Feb; 17(2):427-36. PubMed ID: 26669270 [TBL] [Abstract][Full Text] [Related]
27. NMR characterization of native liquid spider dragline silk from Nephila edulis. Hronska M; van Beek JD; Williamson PT; Vollrath F; Meier BH Biomacromolecules; 2004; 5(3):834-9. PubMed ID: 15132669 [TBL] [Abstract][Full Text] [Related]
28. Structure of model peptides based on Nephila clavipes dragline silk spidroin (MaSp1) studied by 13C cross polarization/magic angle spinning NMR. Yang M; Nakazawa Y; Yamauchi K; Knight D; Asakura T Biomacromolecules; 2005; 6(6):3220-6. PubMed ID: 16283749 [TBL] [Abstract][Full Text] [Related]
29. Strength of Recluse Spider's Silk Originates from Nanofibrils. Wang Q; Schniepp HC ACS Macro Lett; 2018 Nov; 7(11):1364-1370. PubMed ID: 35651244 [TBL] [Abstract][Full Text] [Related]
30. Molecular dynamics of spider dragline silk fiber investigated by 2H MAS NMR. Shi X; Holland GP; Yarger JL Biomacromolecules; 2015 Mar; 16(3):852-9. PubMed ID: 25619304 [TBL] [Abstract][Full Text] [Related]
31. Diffraction from the beta-sheet crystallites in spider silk. Ulrich S; Glišović A; Salditt T; Zippelius A Eur Phys J E Soft Matter; 2008 Nov; 27(3):229-42. PubMed ID: 18843512 [TBL] [Abstract][Full Text] [Related]
32. Secondary structures and conformational changes in flagelliform, cylindrical, major, and minor ampullate silk proteins. Temperature and concentration effects. Dicko C; Knight D; Kenney JM; Vollrath F Biomacromolecules; 2004; 5(6):2105-15. PubMed ID: 15530023 [TBL] [Abstract][Full Text] [Related]
33. Quantifying the fraction of glycine and alanine in beta-sheet and helical conformations in spider dragline silk using solid-state NMR. Holland GP; Jenkins JE; Creager MS; Lewis RV; Yarger JL Chem Commun (Camb); 2008 Nov; (43):5568-70. PubMed ID: 18997954 [TBL] [Abstract][Full Text] [Related]
34. Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk. Xie L; Xu H; Li LB; Hsiao BS; Zhong GJ; Li ZM Sci Rep; 2016 Oct; 6():34572. PubMed ID: 27694989 [TBL] [Abstract][Full Text] [Related]
35. Determining hydrogen-bond interactions in spider silk with 1H-13C HETCOR fast MAS solid-state NMR and DFT proton chemical shift calculations. Holland GP; Mou Q; Yarger JL Chem Commun (Camb); 2013 Jul; 49(59):6680-2. PubMed ID: 23774714 [TBL] [Abstract][Full Text] [Related]
36. Structure-property relationships in major ampullate spider silk as deduced from polarized FTIR spectroscopy. Papadopoulos P; Sölter J; Kremer F Eur Phys J E Soft Matter; 2007 Oct; 24(2):193-9. PubMed ID: 17985073 [TBL] [Abstract][Full Text] [Related]
37. Forcibly spun dragline silk fibers from web-building spider Trichonephila clavata ensure robustness irrespective of spinning speed and humidity. Yazawa K; Sasaki U Int J Biol Macromol; 2021 Jan; 168():550-557. PubMed ID: 33333091 [TBL] [Abstract][Full Text] [Related]
38. Global analysis of kinetics reveals the role of secondary nucleation in recombinant spider silk self-assembly. Hovanová V; Hovan A; Žoldák G; Sedlák E; Humenik M Protein Sci; 2023 Aug; 32(8):e4722. PubMed ID: 37417849 [TBL] [Abstract][Full Text] [Related]
39. Characterization of Hydrogels Made of a Novel Spider Silk Protein eMaSp1s and Evaluation for 3D Printing. Thamm C; DeSimone E; Scheibel T Macromol Biosci; 2017 Nov; 17(11):. PubMed ID: 28805010 [TBL] [Abstract][Full Text] [Related]