These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35902587)

  • 1. Microbial biofilms for electricity generation from water evaporation and power to wearables.
    Liu X; Ueki T; Gao H; Woodard TL; Nevin KP; Fu T; Fu S; Sun L; Lovley DR; Yao J
    Nat Commun; 2022 Jul; 13(1):4369. PubMed ID: 35902587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Conducting Polymeric Membrane and Scaffold
    Bashir S; Houf W; Liu JL; Mulvaney SP
    ACS Appl Mater Interfaces; 2022 May; 14(18):20393-20403. PubMed ID: 34962123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anodic and cathodic biofilms coupled with electricity generation in single-chamber microbial fuel cell using activated sludge.
    Sakr EAE; Khater DZ; El-Khatib KM
    Bioprocess Biosyst Eng; 2021 Dec; 44(12):2627-2643. PubMed ID: 34498106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electricity generation from cattle manure slurry by cassette-electrode microbial fuel cells.
    Inoue K; Ito T; Kawano Y; Iguchi A; Miyahara M; Suzuki Y; Watanabe K
    J Biosci Bioeng; 2013 Nov; 116(5):610-5. PubMed ID: 23764017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water evaporation-induced electricity with
    Hu Q; Ma Y; Ren G; Zhang B; Zhou S
    Sci Adv; 2022 Apr; 8(15):eabm8047. PubMed ID: 35417246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of fiber diameter on the behavior of biofilm and anodic performance of fiber electrodes in microbial fuel cells.
    He G; Gu Y; He S; Schröder U; Chen S; Hou H
    Bioresour Technol; 2011 Nov; 102(22):10763-6. PubMed ID: 21945165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of the microbial community structure of biofilms to ferric iron in microbial fuel cells.
    Liu Q; Yang Y; Mei X; Liu B; Chen C; Xing D
    Sci Total Environ; 2018 Aug; 631-632():695-701. PubMed ID: 29539598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering extracellular polymer substrates biosynthesis and carbon felt-carbon nanotube hybrid electrode to promote biofilm electroactivity and bioelectricity production.
    Li F; Zhang J; Liu D; Yu H; Li C; Liu Q; Chen Z; Song H
    Sci Total Environ; 2023 Dec; 904():166595. PubMed ID: 37659546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial community dynamics in a pilot-scale MFC-AA/O system treating domestic sewage.
    Liu R; Tursun H; Hou X; Odey F; Li Y; Wang X; Xie T
    Bioresour Technol; 2017 Oct; 241():439-447. PubMed ID: 28599222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitin biomass powered microbial fuel cell for electricity production using halophilic Bacillus circulans BBL03 isolated from sea salt harvesting area.
    Gurav R; Bhatia SK; Choi TR; Jung HR; Yang SY; Song HS; Park YL; Han YH; Park JY; Kim YG; Choi KY; Yang YH
    Bioelectrochemistry; 2019 Dec; 130():107329. PubMed ID: 31325898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial biofilm-based hydrovoltaic technology.
    Lü J; Ren G; Hu Q; Rensing C; Zhou S
    Trends Biotechnol; 2023 Sep; 41(9):1155-1167. PubMed ID: 37085401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar energy powered microbial fuel cell with a reversible bioelectrode.
    Strik DP; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2010 Jan; 44(1):532-7. PubMed ID: 19961218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced electricity production by use of reconstituted artificial consortia of estuarine bacteria grown as biofilms.
    Zhang J; Zhang E; Scott K; Burgess JG
    Environ Sci Technol; 2012 Mar; 46(5):2984-92. PubMed ID: 22352455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sweat-activated, wearable microbial fuel cell for long-term, on-demand power generation.
    Ryu J; Landers M; Choi S
    Biosens Bioelectron; 2022 Jun; 205():114128. PubMed ID: 35231752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of anode surface chemistry on microbial fuel cell operation.
    Santoro C; Babanova S; Artyushkova K; Cornejo JA; Ista L; Bretschger O; Marsili E; Atanassov P; Schuler AJ
    Bioelectrochemistry; 2015 Dec; 106(Pt A):141-9. PubMed ID: 26025340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-sustainable, high-power-density bio-solar cells for lab-on-a-chip applications.
    Liu L; Choi S
    Lab Chip; 2017 Nov; 17(22):3817-3825. PubMed ID: 28990602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electricity production and microbial characterization of thermophilic microbial fuel cells.
    Dai K; Wen JL; Zhang F; Ma XW; Cui XY; Zhang Q; Zhao TJ; Zeng RJ
    Bioresour Technol; 2017 Nov; 243():512-519. PubMed ID: 28697453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.
    Kitayama M; Koga R; Kasai T; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions.
    Yang Y; Sun G; Guo J; Xu M
    Bioresour Technol; 2011 Jul; 102(14):7093-8. PubMed ID: 21571526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.