These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35902771)

  • 1. Multidecadal, continent-level analysis indicates agricultural practices impact wheat aphid loads more than climate change.
    Sun X; Sun Y; Ma L; Liu Z; Wang Q; Wang D; Zhang C; Yu H; Xu M; Ding J; Siemann E
    Commun Biol; 2022 Jul; 5(1):761. PubMed ID: 35902771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative importance of long-term changes in climate and land-use on the phenology and abundance of legume crop specialist and generalist aphids.
    Luquet M; Hullé M; Simon JC; Parisey N; Buchard C; Jaloux B
    Insect Sci; 2019 Oct; 26(5):881-896. PubMed ID: 29513406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidecadal, county-level analysis of the effects of land use, Bt cotton, and weather on cotton pests in China.
    Zhang W; Lu Y; van der Werf W; Huang J; Wu F; Zhou K; Deng X; Jiang Y; Wu K; Rosegrant MW
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):E7700-E7709. PubMed ID: 30012617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explicit modeling of abiotic and landscape factors reveals precipitation and forests associated with aphid abundance.
    Stack Whitney K; Meehan TD; Kucharik CJ; Zhu J; Townsend PA; Hamilton K; Gratton C
    Ecol Appl; 2016 Dec; 26(8):2598-2608. PubMed ID: 27875008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systemically modeling the relationship between climate change and wheat aphid abundance.
    Zhang K; Pan Q; Yu D; Wang L; Liu Z; Li X; Liu X
    Sci Total Environ; 2019 Jul; 674():392-400. PubMed ID: 31005841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate warming alters the structure of farmland tritrophic ecological networks and reduces crop yield.
    Derocles SAP; Lunt DH; Berthe SCF; Nichols PC; Moss ED; Evans DM
    Mol Ecol; 2018 Dec; 27(23):4931-4946. PubMed ID: 30346097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of natural enemy foraging guilds in controlling cereal aphids in Michigan wheat.
    Safarzoda S; Bahlai CA; Fox AF; Landis DA
    PLoS One; 2014; 9(12):e114230. PubMed ID: 25473951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Landscape diversity enhances biological control of an introduced crop pest in the north-central USA.
    Gardiner MM; Landis DA; Gratton C; DiFonzo CD; O'Neal M; Chacon JM; Wayo MT; Schmidt NP; Mueller EE; Heimpel GE
    Ecol Appl; 2009 Jan; 19(1):143-54. PubMed ID: 19323179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of acclimation on heat-escape temperatures of two aphid species: Implications for estimating behavioral response of insects to climate warming.
    Ma G; Ma CS
    J Insect Physiol; 2012 Mar; 58(3):303-9. PubMed ID: 21939662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of simulated climate warming on the population dynamics of Sitobion avenae (Fabricius) and its parasitoids in wheat fields.
    Han Z; Tan X; Wang Y; Xu Q; Zhang Y; Harwood JD; Chen J
    Pest Manag Sci; 2019 Dec; 75(12):3252-3259. PubMed ID: 30993856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential distribution of the Russian wheat aphid (Diuraphis noxia): an updated distribution model including irrigation improves model fit for predicting potential spread.
    Avila GA; Davidson M; van Helden M; Fagan L
    Bull Entomol Res; 2019 Feb; 109(1):90-101. PubMed ID: 29665868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex life histories predispose aphids to recent abundance declines.
    Crossley MS; Smith OM; Davis TS; Eigenbrode SD; Hartman GL; Lagos-Kutz D; Halbert SE; Voegtlin DJ; Moran MD; Snyder WE
    Glob Chang Biol; 2021 Sep; 27(18):4283-4293. PubMed ID: 34216186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population dynamics and associated factors of cereal aphids and armyworms under global change.
    Wang L; Hui C; Sandhu HS; Li Z; Zhao Z
    Sci Rep; 2015 Dec; 5():18801. PubMed ID: 26689373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated temperature and drought interact to reduce parasitoid effectiveness in suppressing hosts.
    Romo CM; Tylianakis JM
    PLoS One; 2013; 8(3):e58136. PubMed ID: 23472147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pest control of aphids depends on landscape complexity and natural enemy interactions.
    Martin EA; Reineking B; Seo B; Steffan-Dewenter I
    PeerJ; 2015; 3():e1095. PubMed ID: 26734497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of wheat-mung bean intercropping on English grain aphid (Hemiptera: Aphididae) populations and its natural enemy.
    Xie HC; Chen JL; Cheng DF; Zhou HB; Sun JR; Liu Y; Francis F
    J Econ Entomol; 2012 Jun; 105(3):854-9. PubMed ID: 22812121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multitrophic interactions mediate the effects of climate change on herbivore abundance.
    Robinson A; Inouye DW; Ogilvie JE; Mooney EH
    Oecologia; 2017 Oct; 185(2):181-190. PubMed ID: 28891026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of within-crop habitat manipulations on the conservation biological control of aphids in field-grown lettuce.
    Skirvin DJ; Kravar-Garde L; Reynolds K; Wright C; Mead A
    Bull Entomol Res; 2011 Dec; 101(6):623-31. PubMed ID: 21251340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of wheat planted adjacent to rape on the major pests and their natural enemies in wheat field].
    Li C; Wu WQ; Zhu L; Zhang QW; Liu XX
    Ying Yong Sheng Tai Xue Bao; 2011 Dec; 22(12):3371-6. PubMed ID: 22384611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of warming with temperature oscillations on a low-latitude aphid, Aphis craccivora.
    Chen CY; Chiu MC; Kuo MH
    Bull Entomol Res; 2013 Aug; 103(4):406-13. PubMed ID: 23448233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.