These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35902871)

  • 1. Earbox, an open tool for high-throughput measurement of the spatial organization of maize ears and inference of novel traits.
    Oury V; Leroux T; Turc O; Chapuis R; Palaffre C; Tardieu F; Prado SA; Welcker C; Lacube S
    Plant Methods; 2022 Jul; 18(1):96. PubMed ID: 35902871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images.
    Miller ND; Haase NJ; Lee J; Kaeppler SM; de Leon N; Spalding EP
    Plant J; 2017 Jan; 89(1):169-178. PubMed ID: 27585732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging.
    Makanza R; Zaman-Allah M; Cairns JE; Eyre J; Burgueño J; Pacheco Á; Diepenbrock C; Magorokosho C; Tarekegne A; Olsen M; Prasanna BM
    Plant Methods; 2018; 14():49. PubMed ID: 29946344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images.
    Fernandez-Gallego JA; Kefauver SC; Gutiérrez NA; Nieto-Taladriz MT; Araus JL
    Plant Methods; 2018; 14():22. PubMed ID: 29568319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robot-assisted imaging pipeline for tracking the growths of maize ear and silks in a high-throughput phenotyping platform.
    Brichet N; Fournier C; Turc O; Strauss O; Artzet S; Pradal C; Welcker C; Tardieu F; Cabrera-Bosquet L
    Plant Methods; 2017; 13():96. PubMed ID: 29176999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maize-IAS: a maize image analysis software using deep learning for high-throughput plant phenotyping.
    Zhou S; Chai X; Yang Z; Wang H; Yang C; Sun T
    Plant Methods; 2021 Apr; 17(1):48. PubMed ID: 33926480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny.
    Mendes-Moreira P; Alves ML; Satovic Z; Dos Santos JP; Santos JN; Souza JC; Pêgo SE; Hallauer AR; Vaz Patto MC
    PLoS One; 2015; 10(4):e0124543. PubMed ID: 25923975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection of Drought Tolerant Maize Hybrids Using Path Coefficient Analysis and Selection Index.
    Dao A; Sanou J; V S Traore E; Gracen V; Danquah EY
    Pak J Biol Sci; 2017; 20(3):132-139. PubMed ID: 29023004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic Effects Conferring Heat Tolerance in a Cross of Tolerant × Susceptible Maize (Zea mays L.) Genotypes.
    Naveed M; Ahsan M; Akram HM; Aslam M; Ahmed N
    Front Plant Sci; 2016; 7():729. PubMed ID: 27313583
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Sadeghi-Tehran P; Virlet N; Ampe EM; Reyns P; Hawkesford MJ
    Front Plant Sci; 2019; 10():1176. PubMed ID: 31616456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.).
    Yi Q; Liu Y; Hou X; Zhang X; Li H; Zhang J; Liu H; Hu Y; Yu G; Li Y; Wang Y; Huang Y
    BMC Plant Biol; 2019 Sep; 19(1):392. PubMed ID: 31500559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics.
    Kienbaum L; Correa Abondano M; Blas R; Schmid K
    Plant Methods; 2021 Aug; 17(1):91. PubMed ID: 34419093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heritability and Associations among Grain Yield and Quality Traits in Quality Protein Maize (QPM) and Non-QPM Hybrids.
    Amegbor IK; van Biljon A; Shargie N; Tarekegne A; Labuschagne MT
    Plants (Basel); 2022 Mar; 11(6):. PubMed ID: 35336595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TIPS: a system for automated image-based phenotyping of maize tassels.
    Gage JL; Miller ND; Spalding EP; Kaeppler SM; de Leon N
    Plant Methods; 2017; 13():21. PubMed ID: 28373892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospects for reducing fumonisin contamination of maize through genetic modification.
    Duvick J
    Environ Health Perspect; 2001 May; 109 Suppl 2(Suppl 2):337-42. PubMed ID: 11359705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-Scale Analysis of Combining Ability and Heterosis for Development of Hybrid Maize Breeding Strategies Using Diverse Germplasm Resources.
    Yu K; Wang H; Liu X; Xu C; Li Z; Xu X; Liu J; Wang Z; Xu Y
    Front Plant Sci; 2020; 11():660. PubMed ID: 32547580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Density Linkage Map Construction and Mapping of Yield Trait QTLs in Maize (
    Su C; Wang W; Gong S; Zuo J; Li S; Xu S
    Front Plant Sci; 2017; 8():706. PubMed ID: 28533786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize.
    Huo D; Ning Q; Shen X; Liu L; Zhang Z
    PLoS One; 2016; 11(5):e0155506. PubMed ID: 27176215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic variation in YIGE1 contributes to ear length and grain yield in maize.
    Luo Y; Zhang M; Liu Y; Liu J; Li W; Chen G; Peng Y; Jin M; Wei W; Jian L; Yan J; Fernie AR; Yan J
    New Phytol; 2022 Apr; 234(2):513-526. PubMed ID: 34837389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous Hormones Inhibit Differentiation of Young Ears in Maize (
    Wang HQ; Liu P; Zhang JW; Zhao B; Ren BZ
    Front Plant Sci; 2020; 11():533046. PubMed ID: 33193473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.