BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35902897)

  • 1. A low-cost virtual coach for 2D video-based compensation assessment of upper extremity rehabilitation exercises.
    Cóias AR; Lee MH; Bernardino A
    J Neuroeng Rehabil; 2022 Jul; 19(1):83. PubMed ID: 35902897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology.
    Tsekleves E; Paraskevopoulos IT; Warland A; Kilbride C
    Disabil Rehabil Assist Technol; 2016; 11(5):413-22. PubMed ID: 25391221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating upper-extremity function from kinematics in stroke patients following goal-oriented computer-based training.
    Ballester BR; Antenucci F; Maier M; Coolen ACC; Verschure PFMJ
    J Neuroeng Rehabil; 2021 Dec; 18(1):186. PubMed ID: 34972526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Requirements for home-based upper extremity rehabilitation using wearable motion sensors for stroke patients: a user-centred approach.
    Langerak AJ; Regterschot GRH; Selles RW; Meskers CGM; Evers M; Ribbers GM; van Beijnum BJF; Bussmann JBJ
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1392-1404. PubMed ID: 36905631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a compensation-aware virtual rehabilitation system for upper extremity rehabilitation in community-dwelling older adults with stroke.
    Luo Z; Lim AE; Durairaj P; Tan KK; Verawaty V
    J Neuroeng Rehabil; 2023 May; 20(1):56. PubMed ID: 37127574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online compensation detecting for real-time reduction of compensatory motions during reaching: a pilot study with stroke survivors.
    Cai S; Wei X; Su E; Wu W; Zheng H; Xie L
    J Neuroeng Rehabil; 2020 Apr; 17(1):58. PubMed ID: 32345335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis.
    Gauthier LV; Kane C; Borstad A; Strahl N; Uswatte G; Taub E; Morris D; Hall A; Arakelian M; Mark V
    BMC Neurol; 2017 Jun; 17(1):109. PubMed ID: 28595611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of virtual reality-based planar motion exercises on upper extremity function, range of motion, and health-related quality of life: a multicenter, single-blinded, randomized, controlled pilot study.
    Park M; Ko MH; Oh SW; Lee JY; Ham Y; Yi H; Choi Y; Ha D; Shin JH
    J Neuroeng Rehabil; 2019 Oct; 16(1):122. PubMed ID: 31651335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study.
    Perez-Marcos D; Chevalley O; Schmidlin T; Garipelli G; Serino A; Vuadens P; Tadi T; Blanke O; Millán JDR
    J Neuroeng Rehabil; 2017 Nov; 14(1):119. PubMed ID: 29149855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial.
    Saposnik G; Cohen LG; Mamdani M; Pooyania S; Ploughman M; Cheung D; Shaw J; Hall J; Nord P; Dukelow S; Nilanont Y; De Los Rios F; Olmos L; Levin M; Teasell R; Cohen A; Thorpe K; Laupacis A; Bayley M;
    Lancet Neurol; 2016 Sep; 15(10):1019-27. PubMed ID: 27365261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectiveness of Using Virtual Reality-Supported Exercise Therapy for Upper Extremity Motor Rehabilitation in Patients With Stroke: Systematic Review and Meta-analysis of Randomized Controlled Trials.
    Chen J; Or CK; Chen T
    J Med Internet Res; 2022 Jun; 24(6):e24111. PubMed ID: 35723907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Clinical Evaluation of a Web-Based Upper Limb Home Rehabilitation System Using a Smartwatch and Machine Learning Model for Chronic Stroke Survivors: Prospective Comparative Study.
    Chae SH; Kim Y; Lee KS; Park HS
    JMIR Mhealth Uhealth; 2020 Jul; 8(7):e17216. PubMed ID: 32480361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study.
    Park JH; Park G; Kim HY; Lee JY; Ham Y; Hwang D; Kwon S; Shin JH
    J Neuroeng Rehabil; 2020 Oct; 17(1):137. PubMed ID: 33076952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a mechanism to balance exercise difficulty in robot-assisted upper-extremity rehabilitation after stroke.
    Zimmerli L; Krewer C; Gassert R; Müller F; Riener R; Lünenburger L
    J Neuroeng Rehabil; 2012 Feb; 9():6. PubMed ID: 22304989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation Results of an Ontology-based Design Model of Virtual Environments for Upper Limb Motor Rehabilitation of Stroke Patients.
    Ramírez-Fernández C; Morán AL; García-Canseco E; Gómez-Montalvo JR
    Methods Inf Med; 2017 Mar; 56(2):145-155. PubMed ID: 28220927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upper limb rehabilitation system based on virtual reality for breast cancer patients: Development and usability study.
    Zhou Z; Li J; Wang H; Luan Z; Li Y; Peng X
    PLoS One; 2021; 16(12):e0261220. PubMed ID: 34910786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of machine learning models in estimation of ground reaction forces during balance exergaming.
    Vonstad EK; Bach K; Vereijken B; Su X; Nilsen JH
    J Neuroeng Rehabil; 2022 Feb; 19(1):18. PubMed ID: 35152877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximizing post-stroke upper limb rehabilitation using a novel telerehabilitation interactive virtual reality system in the patient's home: study protocol of a randomized clinical trial.
    Kairy D; Veras M; Archambault P; Hernandez A; Higgins J; Levin MF; Poissant L; Raz A; Kaizer F
    Contemp Clin Trials; 2016 Mar; 47():49-53. PubMed ID: 26655433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified Constraint-Induced Movement Therapy is a feasible and potentially useful addition to the Community Rehabilitation tool kit after stroke: A pilot randomised control trial.
    Baldwin CR; Harry AJ; Power LJ; Pope KL; Harding KE
    Aust Occup Ther J; 2018 Dec; 65(6):503-511. PubMed ID: 29920688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technology-Based Compensation Assessment and Detection of Upper Extremity Activities of Stroke Survivors: Systematic Review.
    Wang X; Fu Y; Ye B; Babineau J; Ding Y; Mihailidis A
    J Med Internet Res; 2022 Jun; 24(6):e34307. PubMed ID: 35699982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.