BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 35902925)

  • 1. PheNominal: an EHR-integrated web application for structured deep phenotyping at the point of care.
    Havrilla JM; Singaravelu A; Driscoll DM; Minkovsky L; Helbig I; Medne L; Wang K; Krantz I; Desai BR
    BMC Med Inform Decis Mak; 2022 Jul; 22(Suppl 2):198. PubMed ID: 35902925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The implementation of a multidisciplinary, electronic health record embedded care pathway to improve structured data recording and decrease electronic health record burden.
    Ebbers T; Takes RP; Smeele LE; Kool RB; van den Broek GB; Dirven R
    Int J Med Inform; 2024 Apr; 184():105344. PubMed ID: 38310755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. REDCap on FHIR: Clinical Data Interoperability Services.
    Cheng AC; Duda SN; Taylor R; Delacqua F; Lewis AA; Bosler T; Johnson KB; Harris PA
    J Biomed Inform; 2021 Sep; 121():103871. PubMed ID: 34298155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normalization and standardization of electronic health records for high-throughput phenotyping: the SHARPn consortium.
    Pathak J; Bailey KR; Beebe CE; Bethard S; Carrell DC; Chen PJ; Dligach D; Endle CM; Hart LA; Haug PJ; Huff SM; Kaggal VC; Li D; Liu H; Marchant K; Masanz J; Miller T; Oniki TA; Palmer M; Peterson KJ; Rea S; Savova GK; Stancl CR; Sohn S; Solbrig HR; Suesse DB; Tao C; Taylor DP; Westberg L; Wu S; Zhuo N; Chute CG
    J Am Med Inform Assoc; 2013 Dec; 20(e2):e341-8. PubMed ID: 24190931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the Availability of Data on Social and Behavioral Determinants in Structured and Unstructured Electronic Health Records: A Retrospective Analysis of a Multilevel Health Care System.
    Hatef E; Rouhizadeh M; Tia I; Lasser E; Hill-Briggs F; Marsteller J; Kharrazi H
    JMIR Med Inform; 2019 Aug; 7(3):e13802. PubMed ID: 31376277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Phenotyping on Electronic Health Records Facilitates Genetic Diagnosis by Clinical Exomes.
    Son JH; Xie G; Yuan C; Ena L; Li Z; Goldstein A; Huang L; Wang L; Shen F; Liu H; Mehl K; Groopman EE; Marasa M; Kiryluk K; Gharavi AG; Chung WK; Hripcsak G; Friedman C; Weng C; Wang K
    Am J Hum Genet; 2018 Jul; 103(1):58-73. PubMed ID: 29961570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating Option Grid Patient Decision Aids in the Epic Electronic Health Record: Case Study at 5 Health Systems.
    Scalia P; Ahmad F; Schubbe D; Forcino R; Durand MA; Barr PJ; Elwyn G
    J Med Internet Res; 2021 May; 23(5):e22766. PubMed ID: 33938806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural Language Processing-Enabled and Conventional Data Capture Methods for Input to Electronic Health Records: A Comparative Usability Study.
    Kaufman DR; Sheehan B; Stetson P; Bhatt AR; Field AI; Patel C; Maisel JM
    JMIR Med Inform; 2016 Oct; 4(4):e35. PubMed ID: 27793791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deployment of Real-time Natural Language Processing and Deep Learning Clinical Decision Support in the Electronic Health Record: Pipeline Implementation for an Opioid Misuse Screener in Hospitalized Adults.
    Afshar M; Adelaine S; Resnik F; Mundt MP; Long J; Leaf M; Ampian T; Wills GJ; Schnapp B; Chao M; Brown R; Joyce C; Sharma B; Dligach D; Burnside ES; Mahoney J; Churpek MM; Patterson BW; Liao F
    JMIR Med Inform; 2023 Apr; 11():e44977. PubMed ID: 37079367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semantic integration of clinical laboratory tests from electronic health records for deep phenotyping and biomarker discovery.
    Zhang XA; Yates A; Vasilevsky N; Gourdine JP; Callahan TJ; Carmody LC; Danis D; Joachimiak MP; Ravanmehr V; Pfaff ER; Champion J; Robasky K; Xu H; Fecho K; Walton NA; Zhu RL; Ramsdill J; Mungall CJ; Köhler S; Haendel MA; McDonald CJ; Vreeman DJ; Peden DB; Bennett TD; Feinstein JA; Martin B; Stefanski AL; Hunter LE; Chute CG; Robinson PN
    NPJ Digit Med; 2019; 2():. PubMed ID: 31119199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and Evaluation of a Natural Language Processing Annotation Tool to Facilitate Phenotyping of Cognitive Status in Electronic Health Records: Diagnostic Study.
    Noori A; Magdamo C; Liu X; Tyagi T; Li Z; Kondepudi A; Alabsi H; Rudmann E; Wilcox D; Brenner L; Robbins GK; Moura L; Zafar S; Benson NM; Hsu J; R Dickson J; Serrano-Pozo A; Hyman BT; Blacker D; Westover MB; Mukerji SS; Das S
    J Med Internet Res; 2022 Aug; 24(8):e40384. PubMed ID: 36040790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Termviewer - A Web Application for Streamlined Human Phenotype Ontology (HPO) Tagging and Document Annotation.
    Nixon A; Fang L; Havrilla JM; Wang K
    Chem Biodivers; 2022 Dec; 19(12):e202200805. PubMed ID: 36328766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating Web Services/Applications to Improve Pediatric Functionalities in Electronic Health Records.
    Weinberg ST; Monsen C; Lehmann CU; Leu MG;
    Pediatrics; 2021 Jul; 148(1):. PubMed ID: 34183360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a phenotype ontology for autism spectrum disorder by natural language processing on electronic health records.
    Zhao M; Havrilla J; Peng J; Drye M; Fecher M; Guthrie W; Tunc B; Schultz R; Wang K; Zhou Y
    J Neurodev Disord; 2022 May; 14(1):32. PubMed ID: 35606697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic Health Record Phenotypes for Identifying Patients with Late-Stage Disease: a Method for Research and Clinical Application.
    Ernecoff NC; Wessell KL; Hanson LC; Lee AM; Shea CM; Dusetzina SB; Weinberger M; Bennett AV
    J Gen Intern Med; 2019 Dec; 34(12):2818-2823. PubMed ID: 31396813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for cohort selection of cardiovascular disease records from an electronic health record system.
    Abrahão MTF; Nobre MRC; Gutierrez MA
    Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of establishing a multi-center research database using the electronic health record: The PURSUIT network.
    Vemulakonda VM; Janzen N; Hittelman AB; Deakyne Davies S; Sevick C; Richardson AC; Schissel J; Dash D; Hintz R; Grider R; Adams P; Buck M; King J; Ewing E; Beltran G; Corbett S; Chiang G
    J Pediatr Urol; 2022 Dec; 18(6):788.e1-788.e8. PubMed ID: 35644792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Free-Text Comments to the Burden of Documentation: Assessment and Analysis of Vital Sign Comments in Flowsheets.
    Yin Z; Liu Y; McCoy AB; Malin BA; Sengstack PR
    J Med Internet Res; 2021 Mar; 23(3):e22806. PubMed ID: 33661128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of a scalable, web-based, automated clinical decision support risk-prediction tool for chronic kidney disease using C-CDA and application programming interfaces.
    Samal L; D'Amore JD; Bates DW; Wright A
    J Am Med Inform Assoc; 2017 Nov; 24(6):1111-1115. PubMed ID: 29016969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of homecare electronic health record on timeliness of clinical documentation, reimbursement, and patient outcomes.
    Sockolow PS; Bowles KH; Adelsberger MC; Chittams JL; Liao C
    Appl Clin Inform; 2014; 5(2):445-62. PubMed ID: 25024760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.