These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35902990)

  • 1. Phosphate drinking water softeners promote Legionella growth.
    Jereb G; Eržen I; Oder M; Poljšak B
    J Water Health; 2022 Jul; 20(7):1084-1090. PubMed ID: 35902990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary Colonizing
    van der Kooij D; Veenendaal HR; Italiaander R; van der Mark EJ; Dignum M
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30291115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorine and Monochloramine Disinfection of
    Buse HY; J Morris B; Struewing IT; Szabo JG
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial distribution of Legionella pneumophila MLVA-genotypes in a drinking water system.
    Rodríguez-Martínez S; Sharaby Y; Pecellín M; Brettar I; Höfle M; Halpern M
    Water Res; 2015 Jun; 77():119-132. PubMed ID: 25864003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the Impacts of Lead Corrosion Control on the Microbial Ecology and Abundance of Drinking-Water-Associated Pathogens in a Full-Scale Drinking Water Distribution System.
    Spencer-Williams I; Meyer M; DePas W; Elliott E; Haig SJ
    Environ Sci Technol; 2023 Dec; 57(48):20360-20369. PubMed ID: 37970641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural Organic Matter, Orthophosphate, pH, and Growth Phase Can Limit Copper Antimicrobial Efficacy for
    Song Y; Pruden A; Edwards MA; Rhoads WJ
    Environ Sci Technol; 2021 Feb; 55(3):1759-1768. PubMed ID: 33428375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-year evaluation of Legionella in an aging residential building: Assessment of multiple potable water remediation approaches.
    Lee-Masi M; Coulter C; Chow SJ; Zaitchik B; Jacangelo JG; Exum NG; Schwab KJ
    Sci Total Environ; 2024 Sep; 941():173710. PubMed ID: 38830423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Legionella pneumophila occurrence in drinking water supplied by private wells.
    Mapili K; Pieper KJ; Dai D; Pruden A; Edwards MA; Tang M; Rhoads WJ
    Lett Appl Microbiol; 2020 Apr; 70(4):232-240. PubMed ID: 31904109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term persistence of infectious Legionella with free-living amoebae in drinking water biofilms.
    Shaheen M; Scott C; Ashbolt NJ
    Int J Hyg Environ Health; 2019 May; 222(4):678-686. PubMed ID: 31036480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative microbial risk assessment of Legionella pneumophila in a drinking water supply system in Israel.
    Sharaby Y; Rodríguez-Martínez S; Höfle MG; Brettar I; Halpern M
    Sci Total Environ; 2019 Jun; 671():404-410. PubMed ID: 30933796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia.
    Jereb G; Poljšak B; Eržen I
    Int J Environ Res Public Health; 2017 Oct; 14(10):. PubMed ID: 28984825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and operational considerations in response to Legionella occurrence in Las Vegas Valley groundwater.
    Atkinson AJ; Morrison CM; Frehner W; Gerrity D; Wert EC
    Water Res; 2022 Jul; 220():118615. PubMed ID: 35617788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. It's getting hot in here: Effects of heat on temperature, disinfection, and opportunistic pathogens in drinking water distribution systems.
    Furst KE; Graham KE; Weisman RJ; Adusei KB
    Water Res; 2024 Aug; 260():121913. PubMed ID: 38901309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling characteristics to predict Legionella contamination risk - Surveillance of drinking water plumbing systems and identification of risk areas.
    Völker S; Schreiber C; Kistemann T
    Int J Hyg Environ Health; 2016 Jan; 219(1):101-9. PubMed ID: 26481275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of Legiolert with ISO 11731-1998 standard method-conclusions from a Public Health Laboratory.
    Checa J; Carbonell I; Manero N; Martí I
    J Microbiol Methods; 2021 Jul; 186():106242. PubMed ID: 34019935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water heater temperature set point and water use patterns influence Legionella pneumophila and associated microorganisms at the tap.
    Rhoads WJ; Ji P; Pruden A; Edwards MA
    Microbiome; 2015 Dec; 3():67. PubMed ID: 26627188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of natural uncultivable Legionella pneumophila into potable water biofilms provides a protective niche against chlorination stress.
    Gião MS; Wilks S; Azevedo NF; Vieira MJ; Keevil CW
    Biofouling; 2009; 25(4):345-51. PubMed ID: 23110528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Legionella growth potential of drinking water produced by a reverse osmosis pilot plant.
    Learbuch KLG; Lut MC; Liu G; Smidt H; van der Wielen PWJJ
    Water Res; 2019 Jun; 157():55-63. PubMed ID: 30952008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of temperature, chlorine residual and heavy metals on the presence of Legionella pneumophila in hot water distribution systems.
    Rakić A; Perić J; Foglar L
    Ann Agric Environ Med; 2012; 19(3):431-6. PubMed ID: 23020035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a most probable number method for the enumeration of Legionella pneumophila from North American potable and nonpotable water samples.
    Petrisek R; Hall J
    J Water Health; 2018 Feb; 16(1):25-33. PubMed ID: 29424715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.