BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 3590316)

  • 1. [Effect of a NaCl gradient on the transport of para-aminohippuric acid into the vesicles of the basolateral membrane of the kidney cortex].
    Orlov IuN; Bresler VM; Kazbekov EN; Sukhodolova AT
    Tsitologiia; 1987 Mar; 29(3):365-8. PubMed ID: 3590316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of barium ion on p-aminohippurate transport in basolateral membrane vesicles isolated from rat kidney cortex.
    Hori M; Gemba M
    Arch Int Pharmacodyn Ther; 1985 Jun; 275(2):287-99. PubMed ID: 2992405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na+ gradient-dependent p-aminohippurate (PAH) transport in rat basolateral membrane vesicles.
    Kasher JS; Holohan PD; Ross CR
    J Pharmacol Exp Ther; 1983 Oct; 227(1):122-9. PubMed ID: 6312013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of basolateral membranes that transport p-aminohippurate from primary cultures of rabbit kidney proximal tubule cells.
    Yang IS; Goldinger JM; Hong SK; Taub M
    J Cell Physiol; 1988 Jun; 135(3):481-7. PubMed ID: 3397387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epinephrine and norepinephrine enhance p-aminohippurate transport into basolateral membrane vesicles.
    Jensen RE; Berndt WO
    J Pharmacol Exp Ther; 1988 Feb; 244(2):543-9. PubMed ID: 2831344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of p-aminohippurate, tetraethylammonium and D-glucose in renal brush border membranes from rats with acute renal failure.
    Hori R; Takano M; Okano T; Inui K
    J Pharmacol Exp Ther; 1985 Jun; 233(3):776-81. PubMed ID: 2989496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH gradient-stimulated transport of urate and p-aminohippurate in dog renal microvillus membrane vesicles.
    Blomstedt JW; Aronson PS
    J Clin Invest; 1980 Apr; 65(4):931-4. PubMed ID: 7358852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cephaloridine on the transport of organic ions in dog kidney plasma membrane vesicles.
    Kasher JS; Holohan PD; Ross CR
    J Pharmacol Exp Ther; 1983 Jun; 225(3):606-10. PubMed ID: 6223134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+-gradient-dependent stimulation of renal transport of rho-aminohippurate.
    Sheikh MI; Møller JV
    Biochem J; 1982 Oct; 208(1):243-6. PubMed ID: 7159395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled transport of p-aminohippurate by rat kidney basolateral membrane vesicles.
    Pritchard JB
    Am J Physiol; 1988 Oct; 255(4 Pt 2):F597-604. PubMed ID: 3177651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of chloride on carrier-mediated transport of p-aminohippurate in rat renal basolateral membrane vesicles.
    Inui K; Takano M; Okano T; Hori R
    Biochim Biophys Acta; 1986 Mar; 855(3):425-8. PubMed ID: 3947632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal inhibition of p-aminohippurate transport in flounder renal tissue: sites of HgCl2 action.
    Miller DS
    J Pharmacol Exp Ther; 1981 Nov; 219(2):428-34. PubMed ID: 6270307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of gentamicin on p - aminohippurate metabolism and transport in rat kidney slices.
    Lapkin R; Bowman R; Kaloyanides GJ
    J Pharmacol Exp Ther; 1977 Apr; 201(1):233-42. PubMed ID: 139467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cephalosporins on organic ion transport in renal membrane vesicles from rat and rabbit kidney cortex.
    Williams PD; Hitchcock MJ; Hottendorf GH
    Res Commun Chem Pathol Pharmacol; 1985 Mar; 47(3):357-71. PubMed ID: 2986254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rat renal cortical slices demonstrate p-aminohippurate/glutarate exchange and sodium/glutarate coupled p-aminohippurate transport.
    Pritchard JB
    J Pharmacol Exp Ther; 1990 Dec; 255(3):969-75. PubMed ID: 2262915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+ and H+ gradient-dependent transport of p-aminohippurate in membrane vesicles from dog kidney cortex.
    Russel FG; van der Linden PE; Vermeulen WG; Heijn M; van Os CH; van Ginneken CA
    Biochem Pharmacol; 1988 Jul; 37(13):2639-49. PubMed ID: 3390224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles.
    Shimada H; Moewes B; Burckhardt G
    Am J Physiol; 1987 Nov; 253(5 Pt 2):F795-801. PubMed ID: 3120599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ouabain-insensitive active sodium transport in rat jejunum: evidence from ATPase activities, Na uptake by basolateral membrane vesicles and in vitro transintestinal transport.
    Tosco M; Orsenigo MN; Esposito G; Faelli A
    Cell Biochem Funct; 1988 Jul; 6(3):155-64. PubMed ID: 2970332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium-dependence of p-aminohippurate transport by rat kidney cortex slices.
    Hayashi H; Hoshi T
    Arch Int Pharmacodyn Ther; 1979 Jul; 240(1):103-15. PubMed ID: 507989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p-Aminohippurate/2-oxoglutarate exchange in bovine renal brush-border and basolateral membrane vesicles.
    Schmitt C; Burckhardt G
    Pflugers Arch; 1993 May; 423(3-4):280-90. PubMed ID: 8321632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.