These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35903546)

  • 1. Editorial: Regulation of Ubiquitination and Sumoylation Signaling in Disease.
    Lin Z; Yan X
    Front Cell Dev Biol; 2022; 10():970683. PubMed ID: 35903546
    [No Abstract]   [Full Text] [Related]  

  • 2. The Next Frontier: Translational Development of Ubiquitination, SUMOylation, and NEDDylation in Cancer.
    Pellegrino NE; Guven A; Gray K; Shah P; Kasture G; Nastke MD; Thakurta A; Gesta S; Vishnudas VK; Narain NR; Kiebish MA
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation.
    Wang X; Feng S; Fan J; Li X; Wen Q; Luo N
    Biochem Pharmacol; 2016 Sep; 116():200-9. PubMed ID: 27473774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane Protein pUL50 of Human Cytomegalovirus Inhibits ISGylation by Downregulating UBE1L.
    Lee MK; Kim YJ; Kim YE; Han TH; Milbradt J; Marschall M; Ahn JH
    J Virol; 2018 Aug; 92(15):. PubMed ID: 29743376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The involvement of post-translational modifications in cardiovascular pathologies: Focus on SUMOylation, neddylation, succinylation, and prenylation.
    Gao J; Shao K; Chen X; Li Z; Liu Z; Yu Z; Aung LHH; Wang Y; Li P
    J Mol Cell Cardiol; 2020 Jan; 138():49-58. PubMed ID: 31751566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of posttranslational modifications in pancreatic carcinogenesis and treatments.
    Chen N; Zheng Q; Wan G; Guo F; Zeng X; Shi P
    Cancer Metastasis Rev; 2021 Sep; 40(3):739-759. PubMed ID: 34342796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy.
    Li X; Song Y
    J Hematol Oncol; 2020 May; 13(1):50. PubMed ID: 32404196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-terminal Sumoylation of Centromeric Histone H3 Variant Cse4 Regulates Its Proteolysis To Prevent Mislocalization to Non-centromeric Chromatin.
    Ohkuni K; Levy-Myers R; Warren J; Au WC; Takahashi Y; Baker RE; Basrai MA
    G3 (Bethesda); 2018 Mar; 8(4):1215-1223. PubMed ID: 29432128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PROTAC-induced proteolytic targeting.
    Carmony KC; Kim KB
    Methods Mol Biol; 2012; 832():627-38. PubMed ID: 22350917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutically targeting the SUMOylation, Ubiquitination and Proteasome pathways as a novel anticancer strategy.
    Driscoll JJ; Dechowdhury R
    Target Oncol; 2010 Dec; 5(4):281-9. PubMed ID: 21125340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The PROTAC technology in drug development.
    Zou Y; Ma D; Wang Y
    Cell Biochem Funct; 2019 Jan; 37(1):21-30. PubMed ID: 30604499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Adenovirus E4-ORF3 Protein Stimulates SUMOylation of General Transcription Factor TFII-I to Direct Proteasomal Degradation.
    Bridges RG; Sohn SY; Wright J; Leppard KN; Hearing P
    mBio; 2016 Jan; 7(1):e02184-15. PubMed ID: 26814176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interferon-stimulated gene 15 enters posttranslational modifications of p53.
    Wang Y; Ding Q; Lu YC; Cao SY; Liu QX; Zhang L
    J Cell Physiol; 2019 May; 234(5):5507-5518. PubMed ID: 30317575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination.
    Luo HB; Xia YY; Shu XJ; Liu ZC; Feng Y; Liu XH; Yu G; Yin G; Xiong YS; Zeng K; Jiang J; Ye K; Wang XC; Wang JZ
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16586-91. PubMed ID: 25378699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNF4-A Paradigm for SUMOylation-Mediated Ubiquitination.
    Kumar R; Sabapathy K
    Proteomics; 2019 Nov; 19(21-22):e1900185. PubMed ID: 31566917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RhoGDI stability is regulated by SUMOylation and ubiquitination via the AT1 receptor and participates in Ang II-induced smooth muscle proliferation and vascular remodeling.
    Dai F; Qi Y; Guan W; Meng G; Liu Z; Zhang T; Yao W
    Atherosclerosis; 2019 Sep; 288():124-136. PubMed ID: 31362179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational modifications of Parkinson's disease-related proteins: Phosphorylation, SUMOylation and Ubiquitination.
    Junqueira SC; Centeno EGZ; Wilkinson KA; Cimarosti H
    Biochim Biophys Acta Mol Basis Dis; 2019 Aug; 1865(8):2001-2007. PubMed ID: 30412791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CK2-RNF4 interplay coordinates non-canonical SUMOylation and degradation of nuclear receptor FXR.
    Bilodeau S; Caron V; Gagnon J; Kuftedjian A; Tremblay A
    J Mol Cell Biol; 2017 Jun; 9(3):195-208. PubMed ID: 28201649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SENP3 regulates the global protein turnover and the Sp1 level via antagonizing SUMO2/3-targeted ubiquitination and degradation.
    Wang M; Sang J; Ren Y; Liu K; Liu X; Zhang J; Wang H; Wang J; Orian A; Yang J; Yi J
    Protein Cell; 2016 Jan; 7(1):63-77. PubMed ID: 26511642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SUMOylation and NEDDylation in Primary and Metastatic Cancers to Bone.
    Gomarasca M; Lombardi G; Maroni P
    Front Cell Dev Biol; 2022; 10():889002. PubMed ID: 35465332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.