BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35903811)

  • 1. Awake Mouse fMRI and Pupillary Recordings in the Ultra-High Magnetic Field.
    Zeng H; Jiang Y; Beer-Hammer S; Yu X
    Front Neurosci; 2022; 16():886709. PubMed ID: 35903811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of fMRI responses to visual stimulation in anesthetized vs. awake mice.
    Dinh TNA; Jung WB; Shim HJ; Kim SG
    Neuroimage; 2021 Feb; 226():117542. PubMed ID: 33186719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution awake mouse fMRI at 14 Tesla.
    Hike D; Liu X; Xie Z; Zhang B; Choi S; Zhou XA; Liu A; Murstein A; Jiang Y; Devor A; Yu X
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradual Restraint Habituation for Awake Functional Magnetic Resonance Imaging Combined With a Sparse Imaging Paradigm Reduces Motion Artifacts and Stress Levels in Rodents.
    Russo G; Helluy X; Behroozi M; Manahan-Vaughan D
    Front Neurosci; 2021; 15():805679. PubMed ID: 34992520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the bioimaging marker of Alzheimer's disease based on pupillary light response-driven brain-wide fMRI in awake mice.
    Liu X; Hike D; Choi S; Man W; Ran C; Zhou XA; Jiang Y; Yu X
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Odor-evoked layer-specific fMRI activities in the awake mouse olfactory bulb.
    Poplawsky AJ; Cover C; Reddy S; Chishti HB; Vazquez A; Fukuda M
    Neuroimage; 2023 Jul; 274():120121. PubMed ID: 37080347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auditory evoked BOLD responses in awake compared to lightly anaesthetized zebra finches.
    Van Ruijssevelt L; Hamaide J; Van Gurp MT; Verhoye M; Van der Linden A
    Sci Rep; 2017 Oct; 7(1):13563. PubMed ID: 29051552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory evoked fMRI paradigms in awake mice.
    Chen X; Tong C; Han Z; Zhang K; Bo B; Feng Y; Liang Z
    Neuroimage; 2020 Jan; 204():116242. PubMed ID: 31586674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Awake and behaving mouse fMRI during Go/No-Go task.
    Han Z; Chen W; Chen X; Zhang K; Tong C; Zhang X; Li CT; Liang Z
    Neuroimage; 2019 Mar; 188():733-742. PubMed ID: 30611875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel method for functional brain imaging in awake minimally restrained rats.
    Chang PC; Procissi D; Bao Q; Centeno MV; Baria A; Apkarian AV
    J Neurophysiol; 2016 Jul; 116(1):61-80. PubMed ID: 27052584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BOLD temporal variability differentiates wakefulness from anesthesia-induced unconsciousness.
    Baria AT; Centeno MV; Ghantous ME; Chang PC; Procissi D; Apkarian AV
    J Neurophysiol; 2018 Mar; 119(3):834-848. PubMed ID: 29212921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cranioplastic Surgery and Acclimation Training for Awake Mouse fMRI.
    Tsurugizawa T; Tamada K; Debacker C; Zalesky A; Takumi T
    Bio Protoc; 2021 Apr; 11(7):e3972. PubMed ID: 33889666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological effects of a habituation procedure for functional MRI in awake mice using a cryogenic radiofrequency probe.
    Yoshida K; Mimura Y; Ishihara R; Nishida H; Komaki Y; Minakuchi T; Tsurugizawa T; Mimura M; Okano H; Tanaka KF; Takata N
    J Neurosci Methods; 2016 Dec; 274():38-48. PubMed ID: 27702586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BOLD fMRI in awake prairie voles: A platform for translational social and affective neuroscience.
    Yee JR; Kenkel WM; Kulkarni P; Moore K; Perkeybile AM; Toddes S; Amacker JA; Carter CS; Ferris CF
    Neuroimage; 2016 Sep; 138():221-232. PubMed ID: 27238726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparison of Visual Response Properties in the Lateral Geniculate Nucleus and Primary Visual Cortex of Awake and Anesthetized Mice.
    Durand S; Iyer R; Mizuseki K; de Vries S; Mihalas S; Reid RC
    J Neurosci; 2016 Nov; 36(48):12144-12156. PubMed ID: 27903724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping brain networks in awake mice using combined optical neural control and fMRI.
    Desai M; Kahn I; Knoblich U; Bernstein J; Atallah H; Yang A; Kopell N; Buckner RL; Graybiel AM; Moore CI; Boyden ES
    J Neurophysiol; 2011 Mar; 105(3):1393-405. PubMed ID: 21160013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the functional network of medial prefrontal cortex by combining optogenetics and fMRI in awake rats.
    Liang Z; Watson GD; Alloway KD; Lee G; Neuberger T; Zhang N
    Neuroimage; 2015 Aug; 117():114-23. PubMed ID: 26002727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A radiofrequency coil to facilitate task-based fMRI of awake marmosets.
    Gilbert KM; Dureux A; Jafari A; Zanini A; Zeman P; Menon RS; Everling S
    J Neurosci Methods; 2023 Jan; 383():109737. PubMed ID: 36341968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution relaxometry-based calibrated fMRI in murine brain: Metabolic differences between awake and anesthetized states.
    Xu M; Bo B; Pei M; Chen Y; Shu CY; Qin Q; Hirschler L; Warnking JM; Barbier EL; Wei Z; Lu H; Herman P; Hyder F; Liu ZJ; Liang Z; Thompson GJ
    J Cereb Blood Flow Metab; 2022 May; 42(5):811-825. PubMed ID: 34910894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI.
    Niranjan A; Christie IN; Solomon SG; Wells JA; Lythgoe MF
    Neuroimage; 2016 Oct; 139():337-345. PubMed ID: 27296012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.