These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 359039)

  • 21. High-resolution phosphorus nuclear magnetic resonance spectroscopy of transfer ribonucleic acids: multiple conformations in the anticodon loop.
    Gorenstein DG; Goldfield EM
    Biochemistry; 1982 Nov; 21(23):5839-49. PubMed ID: 6185140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of exchangeable protons and the extent of base pairings in yeast phenylalanine transfer RNA by high resolution nuclear magnetic resonance.
    Wong YP; Kearns DR; Reid BR; Shulman RG
    J Mol Biol; 1972 Dec; 72(3):725-40. PubMed ID: 4573845
    [No Abstract]   [Full Text] [Related]  

  • 23. Raman spectra of transfer RNAs with ultraviolet lasers.
    Nishimura Y; Hirakawa AY; Tsuboi M; Nishimura S
    Nature; 1976 Mar; 260(5547):173-4. PubMed ID: 768775
    [No Abstract]   [Full Text] [Related]  

  • 24. Comparison of isotope labeling patterns of purines in three specific transfer RNAs.
    Schoemaker HJ; Gamble RC
    Biochemistry; 1976 Jun; 15(13):2800-3. PubMed ID: 779830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Escherichia coli 5S RNA binding proteins L18 and L25 interact with 5.8S RNA but not with 5S RNA from yeast ribosomes.
    Wrede P; Erdmann VA
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2706-9. PubMed ID: 142985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. X-ray diffraction study of the zinc(II) binding sites in yeast phenylalanine transfer RNA. Preferential binding of zinc to guanines in purine-purine sequences.
    Rubin JR; Wang J; Sundaralingam M
    Biochim Biophys Acta; 1983 Mar; 756(1):111-8. PubMed ID: 6337651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of base pairing in Escherichia coli and Bacillus stearothermophilus 5S RNAs by infrared spectroscopy.
    Appel B; Erdmann VA; Stulz J; Ackerman T
    Nucleic Acids Res; 1979 Oct; 7(4):1043-57. PubMed ID: 388350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement.
    Sussman JL; Holbrook SR; Warrant RW; Church GM; Kim SH
    J Mol Biol; 1978 Aug; 123(4):607-30. PubMed ID: 357742
    [No Abstract]   [Full Text] [Related]  

  • 29. Raman studies of nucleic acids. VI. Conformational structures of tRNA fMet , tRNA Val and tRNA Phe 2 .
    Thomas GJ; Medeiros GC; Hartman KA
    Biochim Biophys Acta; 1972 Aug; 277(1):71-9. PubMed ID: 4559804
    [No Abstract]   [Full Text] [Related]  

  • 30. A computer probe of the circular dichroic bands of nucleic acids in the ultraviolet region. I. Transfer ribonucleic acid.
    Wells BD; Yang JT
    Biochemistry; 1974 Mar; 13(7):1311-6. PubMed ID: 4593439
    [No Abstract]   [Full Text] [Related]  

  • 31. Studies of yeast phenylalanine-accepting transfer ribonucleic acid backbone structure in solution by phosphorus-31 nuclear magnetic resonance spectroscopy.
    Salemink PJ; Swarthof T; Hilbers CW
    Biochemistry; 1979 Aug; 18(16):3477-85. PubMed ID: 383144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Melting of Saccharomyces cerevisiae 5S ribonucleic acid: ultraviolet absorption, circular dichroism, and 360-MHz proton nuclear magnetic resonance spectroscopy.
    Luoma GA; Burns PD; Bruce RE; Marshall AG
    Biochemistry; 1980 Nov; 19(23):5456-62. PubMed ID: 7004487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transfer RNA: change of conformation upon aminoacylation determined by Raman spectroscopy.
    Thomas GJ; Chen MC; Lord RC; Kotsiopoulos PS; Tritton TR; Mohr SC
    Biochem Biophys Res Commun; 1973 Sep; 54(2):570-7. PubMed ID: 4585688
    [No Abstract]   [Full Text] [Related]  

  • 34. Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0angstroms resolution.
    Suddath FL; Quigley GJ; McPherson A; Sneden D; Kim JJ; Kim SH; Rich A
    Nature; 1974 Mar; 248(5443):20-4. PubMed ID: 4594440
    [No Abstract]   [Full Text] [Related]  

  • 35. Hydrogen-bonded protons in the tertiary structure of yeast tRNAPhe in solution.
    Römer R; Varadi V
    Proc Natl Acad Sci U S A; 1977 Apr; 74(4):1561-4. PubMed ID: 323858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Yeast phenylalanine transfer RNA: atomic coordinates and torsion angles.
    Quigley GJ; Seeman NC; Wang AH; Suddath FL; Rich A
    Nucleic Acids Res; 1975 Dec; 2(12):2329-41. PubMed ID: 802512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical probes for higher-order structure in RNA.
    Peattie DA; Gilbert W
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4679-82. PubMed ID: 6159633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. tRNA tertiary structure in solution as probed by the photochemically induced 8-13 cross-link.
    Favre A; Buchingham R; Thomas G
    Nucleic Acids Res; 1975 Aug; 2(8):1421-31. PubMed ID: 1101224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Idealized atomic coordinates of yeast phenylalanine transfer RNA.
    Sussman JL; Kim SH
    Biochem Biophys Res Commun; 1976 Jan; 68(1):89-96. PubMed ID: 1108880
    [No Abstract]   [Full Text] [Related]  

  • 40. Determination of base pairing in ribonucleic acid by Fourier-transform infrared spectrometry: yeast ribosomal 5S ribonucleic acid.
    Burkey KO; Marshall AG; Alben JO
    Biochemistry; 1983 Aug; 22(18):4223-9. PubMed ID: 6354249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.