BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35903998)

  • 1. The stickers and spacers of Rubiscondensation: assembling the centrepiece of biophysical CO2-concentrating mechanisms.
    Ang WSL; How JA; How JB; Mueller-Cajar O
    J Exp Bot; 2023 Jan; 74(2):612-626. PubMed ID: 35903998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rubisco proton production can drive the elevation of CO
    Long BM; Förster B; Pulsford SB; Price GD; Badger MR
    Proc Natl Acad Sci U S A; 2021 May; 118(18):. PubMed ID: 33931502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxysome Mispositioning Alters Growth, Morphology, and Rubisco Level of the Cyanobacterium Synechococcus elongatus PCC 7942.
    Rillema R; Hoang Y; MacCready JS; Vecchiarelli AG
    mBio; 2021 Aug; 12(4):e0269620. PubMed ID: 34340540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rubisco condensate formation by CcmM in β-carboxysome biogenesis.
    Wang H; Yan X; Aigner H; Bracher A; Nguyen ND; Hee WY; Long BM; Price GD; Hartl FU; Hayer-Hartl M
    Nature; 2019 Feb; 566(7742):131-135. PubMed ID: 30675061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A linker protein from a red-type pyrenoid phase separates with Rubisco via oligomerizing sticker motifs.
    Oh ZG; Ang WSL; Poh CW; Lai SK; Sze SK; Li HY; Bhushan S; Wunder T; Mueller-Cajar O
    Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2304833120. PubMed ID: 37311001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO
    Wunder T; Oh ZG; Mueller-Cajar O
    Traffic; 2019 Jun; 20(6):380-389. PubMed ID: 31001862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrenoid proteomics reveals independent evolution of the CO
    Moromizato R; Fukuda K; Suzuki S; Motomura T; Nagasato C; Hirakawa Y
    Proc Natl Acad Sci U S A; 2024 Mar; 121(10):e2318542121. PubMed ID: 38408230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pyrenoid: the eukaryotic CO2-concentrating organelle.
    He S; Crans VL; Jonikas MC
    Plant Cell; 2023 Sep; 35(9):3236-3259. PubMed ID: 37279536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Separation of Rubisco by the Folded SSUL Domains of CcmM in Beta-Carboxysome Biogenesis.
    Wang H; Hayer-Hartl M
    Methods Mol Biol; 2023; 2563():269-296. PubMed ID: 36227479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of Functional Rubisco Activases into Engineered Carboxysomes to Enhance Carbon Fixation.
    Chen T; Fang Y; Jiang Q; Dykes GF; Lin Y; Price GD; Long BM; Liu LN
    ACS Synth Biol; 2022 Jan; 11(1):154-161. PubMed ID: 34664944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Rubisco-binding protein is required for normal pyrenoid number and starch sheath morphology in
    Itakura AK; Chan KX; Atkinson N; Pallesen L; Wang L; Reeves G; Patena W; Caspari O; Roth R; Goodenough U; McCormick AJ; Griffiths H; Jonikas MC
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18445-18454. PubMed ID: 31455733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomolecular condensates in photosynthesis and metabolism.
    Wunder T; Mueller-Cajar O
    Curr Opin Plant Biol; 2020 Dec; 58():1-7. PubMed ID: 32966943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biodiversity of carbon assimilation.
    Kroth PG
    J Plant Physiol; 2015 Jan; 172():76-81. PubMed ID: 25239594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the in vivo function of α-carboxysomes and β-carboxysomes in two model cyanobacteria.
    Whitehead L; Long BM; Price GD; Badger MR
    Plant Physiol; 2014 May; 165(1):398-411. PubMed ID: 24642960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural basis of Rubisco phase separation in the pyrenoid.
    He S; Chou HT; Matthies D; Wunder T; Meyer MT; Atkinson N; Martinez-Sanchez A; Jeffrey PD; Port SA; Patena W; He G; Chen VK; Hughson FM; McCormick AJ; Mueller-Cajar O; Engel BD; Yu Z; Jonikas MC
    Nat Plants; 2020 Dec; 6(12):1480-1490. PubMed ID: 33230314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger.
    Wunder T; Cheng SLH; Lai SK; Li HY; Mueller-Cajar O
    Nat Commun; 2018 Nov; 9(1):5076. PubMed ID: 30498228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Studies in Rhodospirillum rubrum Indicate That Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) Catalyzes Two Obligatorily Required and Physiologically Significant Reactions for Distinct Carbon and Sulfur Metabolic Pathways.
    Dey S; North JA; Sriram J; Evans BS; Tabita FR
    J Biol Chem; 2015 Dec; 290(52):30658-68. PubMed ID: 26511314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism.
    Mangan NM; Flamholz A; Hood RD; Milo R; Savage DF
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):E5354-62. PubMed ID: 27551079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrenoids: CO
    Barrett J; Girr P; Mackinder LCM
    Biochim Biophys Acta Mol Cell Res; 2021 Apr; 1868(5):118949. PubMed ID: 33421532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle.
    Mackinder LC; Meyer MT; Mettler-Altmann T; Chen VK; Mitchell MC; Caspari O; Freeman Rosenzweig ES; Pallesen L; Reeves G; Itakura A; Roth R; Sommer F; Geimer S; Mühlhaus T; Schroda M; Goodenough U; Stitt M; Griffiths H; Jonikas MC
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5958-63. PubMed ID: 27166422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.