BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35904034)

  • 21. SPR/SERS dual-mode plasmonic biosensor via catalytic hairpin assembly-induced AuNP network.
    Song C; Zhang J; Jiang X; Gan H; Zhu Y; Peng Q; Fang X; Guo Y; Wang L
    Biosens Bioelectron; 2021 Oct; 190():113376. PubMed ID: 34098358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly sensitive detection of CYFRA21-1 with a SERS sensing platform based on the MBs enrichment strategy and antibody-DNA-mediated CHA amplification.
    Bao X; Wang S; Liu X; Li G
    Front Bioeng Biotechnol; 2023; 11():1251595. PubMed ID: 37635996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel molecularly imprinted nanogel modified microfluidic paper-based SERS substrate for simultaneous detection of bisphenol A and bisphenol S traces in plastics.
    Sharipov M; Ju TJ; Azizov S; Turaev A; Lee YI
    J Hazard Mater; 2024 Jan; 461():132561. PubMed ID: 37729714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An ultrasensitive SERS sensor for simultaneous detection of multiple cancer-related miRNAs.
    Song CY; Yang YJ; Yang BY; Sun YZ; Zhao YP; Wang LH
    Nanoscale; 2016 Oct; 8(39):17365-17373. PubMed ID: 27714088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling.
    Wang C; Yu C
    Nanotechnology; 2015 Mar; 26(9):092001. PubMed ID: 25676092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface Enhanced Raman Spectroscopy (SERS) for the Multiplex Detection of Braf, Kras, and Pik3ca Mutations in Plasma of Colorectal Cancer Patients.
    Li X; Yang T; Li CS; Song Y; Lou H; Guan D; Jin L
    Theranostics; 2018; 8(6):1678-1689. PubMed ID: 29556349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-efficiency enzyme-free catalyzed hairpin assembly-mediated homogeneous SERS and naked-eyes dual-mode assay for ultrasensitive and portable detection of mycotoxin.
    Yang Y; Wu D; Liu J; Su Z; Li L; Wu Y; Li G
    Biosens Bioelectron; 2022 Oct; 214():114526. PubMed ID: 35809452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SERS spectroscopy using Au-Ag nanoshuttles and hydrophobic paper-based Au nanoflower substrate for simultaneous detection of dual cervical cancer-associated serum biomarkers.
    Lu D; Ran M; Liu Y; Xia J; Bi L; Cao X
    Anal Bioanal Chem; 2020 Oct; 412(26):7099-7112. PubMed ID: 32737551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new photoelectrochemical biosensor for ultrasensitive determination of nucleic acids based on a three-stage cascade signal amplification strategy.
    Xiong E; Yan X; Zhang X; Li Y; Yang R; Meng L; Chen J
    Analyst; 2018 Jun; 143(12):2799-2806. PubMed ID: 29862398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. "Signal-on" SERS sensing platform for highly sensitive and selective Pb
    Wu Y; Fu C; Xiang J; Cao Y; Deng Y; Xu R; Zhang H; Shi W
    Anal Chim Acta; 2020 Aug; 1127():106-113. PubMed ID: 32800113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SERS-Based Pump-Free Microfluidic Chip for Highly Sensitive Immunoassay of Prostate-Specific Antigen Biomarkers.
    Gao R; Lv Z; Mao Y; Yu L; Bi X; Xu S; Cui J; Wu Y
    ACS Sens; 2019 Apr; 4(4):938-943. PubMed ID: 30864786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A micro-nano interface integrated SERS-based microfluidic sensor for miRNA detection using DNAzyme walker amplification.
    Lu Y; Yu Y; Wang Y; Zhou W; Cheng Z; Yu L; Zheng S; Gao R
    Anal Chim Acta; 2023 Dec; 1283():341957. PubMed ID: 37977782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A microfluidic-based SERS biosensor with multifunctional nanosurface immobilized nanoparticles for sensitive detection of MicroRNA.
    Ma W; Liu L; Zhang X; Liu X; Xu Y; Li S; Zeng M
    Anal Chim Acta; 2022 Aug; 1221():340139. PubMed ID: 35934371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous single-cell phenotype analysis of hepatocellular carcinoma CTCs using a SERS-aptamer based microfluidic chip.
    Gao R; Zhan C; Wu C; Lu Y; Cao B; Huang J; Wang F; Yu L
    Lab Chip; 2021 Oct; 21(20):3888-3898. PubMed ID: 34387639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-performance surface-enhanced Raman spectroscopy chip integrated with a micro-optical system for the rapid detection of creatinine in serum.
    Yang F; Wen P; Li G; Zhang Z; Ge C; Chen L
    Biomed Opt Express; 2021 Aug; 12(8):4795-4806. PubMed ID: 34513225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Target-Triggered Catalytic Hairpin Assembly-Induced Core-Satellite Nanostructures for High-Sensitive "Off-to-On" SERS Detection of Intracellular MicroRNA.
    Liu C; Chen C; Li S; Dong H; Dai W; Xu T; Liu Y; Yang F; Zhang X
    Anal Chem; 2018 Sep; 90(17):10591-10599. PubMed ID: 30058321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In Situ Microfluidic SERS Chip for Ultrasensitive Hg
    Zhang H; Wang D; Zhang D; Zhang T; Yang L; Li Z
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2211-2218. PubMed ID: 34964597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasensitive SERS detection of lysozyme by a target-triggering multiple cycle amplification strategy based on a gold substrate.
    He P; Zhang Y; Liu L; Qiao W; Zhang S
    Chemistry; 2013 Jun; 19(23):7452-60. PubMed ID: 23576076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip.
    Wu L; Wang Z; Zong S; Cui Y
    Biosens Bioelectron; 2014 Dec; 62():13-8. PubMed ID: 24973537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic chip based micro RNA detection through the combination of fluorescence and surface enhanced Raman scattering techniques.
    Wang Z; Zong S; Wang Z; Wu L; Chen P; Yun B; Cui Y
    Nanotechnology; 2017 Mar; 28(10):105501. PubMed ID: 28139463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.