BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35904052)

  • 1. A Bayesian random regression method using mixture priors for genome-enabled analysis of time-series high-throughput phenotyping data.
    Qu J; Morota G; Cheng H
    Plant Genome; 2022 Sep; 15(3):e20228. PubMed ID: 35904052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic Prediction from Multiple-Trait Bayesian Regression Methods Using Mixture Priors.
    Cheng H; Kizilkaya K; Zeng J; Garrick D; Fernando R
    Genetics; 2018 May; 209(1):89-103. PubMed ID: 29514861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a Bayesian dominance model improves power in quantitative trait genome-wide association analysis.
    Bennewitz J; Edel C; Fries R; Meuwissen TH; Wellmann R
    Genet Sel Evol; 2017 Jan; 49(1):7. PubMed ID: 28088170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of prior specifications in a shrinkage-inducing Bayesian model for quantitative trait mapping and genomic prediction.
    Knürr T; Läärä E; Sillanpää MJ
    Genet Sel Evol; 2013 Jul; 45(1):24. PubMed ID: 23834140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leveraging Breeding Values Obtained from Random Regression Models for Genetic Inference of Longitudinal Traits.
    Campbell M; Momen M; Walia H; Morota G
    Plant Genome; 2019 Jun; 12(2):. PubMed ID: 31290928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mega-scale Bayesian regression methods for genome-wide prediction and association studies with thousands of traits.
    Qu J; Runcie D; Cheng H
    Genetics; 2023 Mar; 223(3):. PubMed ID: 36529897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies.
    Zhao T; Fernando R; Cheng H
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multiple-Trait Bayesian Lasso for Genome-Enabled Analysis and Prediction of Complex Traits.
    Gianola D; Fernando RL
    Genetics; 2020 Feb; 214(2):305-331. PubMed ID: 31879318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multiple-Trait Bayesian Variable Selection Regression Method for Integrating Phenotypic Causal Networks in Genome-Wide Association Studies.
    Wang Z; Chapman D; Morota G; Cheng H
    G3 (Bethesda); 2020 Dec; 10(12):4439-4448. PubMed ID: 33020191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing random regression models for genomic prediction of a longitudinal trait derived from high-throughput phenotyping.
    Campbell M; Walia H; Morota G
    Plant Direct; 2018 Sep; 2(9):e00080. PubMed ID: 31245746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic prediction using an iterative conditional expectation algorithm for a fast BayesC-like model.
    Dong L; Wang Z
    Genetica; 2018 Oct; 146(4-5):361-368. PubMed ID: 29948517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic prediction of breeding values using previously estimated SNP variances.
    Calus MP; Schrooten C; Veerkamp RF
    Genet Sel Evol; 2014 Sep; 46(1):52. PubMed ID: 25928875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable selection models for genomic selection using whole-genome sequence data and singular value decomposition.
    Meuwissen THE; Indahl UG; Ødegård J
    Genet Sel Evol; 2017 Dec; 49(1):94. PubMed ID: 29281962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic prediction models for traits differing in heritability for soybean, rice, and maize.
    Kaler AS; Purcell LC; Beissinger T; Gillman JD
    BMC Plant Biol; 2022 Feb; 22(1):87. PubMed ID: 35219296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining cow and bull reference populations to increase accuracy of genomic prediction and genome-wide association studies.
    Calus MP; de Haas Y; Veerkamp RF
    J Dairy Sci; 2013 Oct; 96(10):6703-15. PubMed ID: 23891299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle.
    Hassani S; Saatchi M; Fernando RL; Garrick DJ
    Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the areas of applicability of whole-genome prediction methods for Asian rice (Oryza sativa L.).
    Onogi A; Ideta O; Inoshita Y; Ebana K; Yoshioka T; Yamasaki M; Iwata H
    Theor Appl Genet; 2015 Jan; 128(1):41-53. PubMed ID: 25341369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-trait random regression models increase genomic prediction accuracy for a temporal physiological trait derived from high-throughput phenotyping.
    Baba T; Momen M; Campbell MT; Walia H; Morota G
    PLoS One; 2020; 15(2):e0228118. PubMed ID: 32012182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of methods for whole-genome QTL mapping using dense markers in four livestock species.
    Legarra A; Croiseau P; Sanchez MP; Teyssèdre S; Sallé G; Allais S; Fritz S; Moreno CR; Ricard A; Elsen JM
    Genet Sel Evol; 2015 Feb; 47(1):6. PubMed ID: 25885597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide prediction of discrete traits using Bayesian regressions and machine learning.
    González-Recio O; Forni S
    Genet Sel Evol; 2011 Feb; 43(1):7. PubMed ID: 21329522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.