These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35904350)

  • 41. Network stability through homeostatic scaling of excitatory and inhibitory synapses following inactivity in CA3 of rat organotypic hippocampal slice cultures.
    Buckby LE; Jensen TP; Smith PJ; Empson RM
    Mol Cell Neurosci; 2006 Apr; 31(4):805-16. PubMed ID: 16500111
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Activity-Dependent Global Downscaling of Evoked Neurotransmitter Release across Glutamatergic Inputs in
    Karunanithi S; Lin YQ; Odierna GL; Menon H; Gonzalez JM; Neely GG; Noakes PG; Lavidis NA; Moorhouse AJ; van Swinderen B
    J Neurosci; 2020 Oct; 40(42):8025-8041. PubMed ID: 32928887
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Increase in AMPA receptor-mediated miniature EPSC amplitude after chronic NMDA receptor blockade in cultured hippocampal neurons.
    Kato K; Sekino Y; Takahashi H; Yasuda H; Shirao T
    Neurosci Lett; 2007 May; 418(1):4-8. PubMed ID: 17395372
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An Intrinsic Transcriptional Program Underlying Synaptic Scaling during Activity Suppression.
    Schaukowitch K; Reese AL; Kim SK; Kilaru G; Joo JY; Kavalali ET; Kim TK
    Cell Rep; 2017 Feb; 18(6):1512-1526. PubMed ID: 28178527
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Retinoic Acid Receptor RARα-Dependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex.
    Zhong LR; Chen X; Park E; Südhof TC; Chen L
    J Neurosci; 2018 Dec; 38(49):10454-10466. PubMed ID: 30355624
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactions between synaptic homeostatic mechanisms: an attempt to reconcile BCM theory, synaptic scaling, and changing excitation/inhibition balance.
    Keck T; Hübener M; Bonhoeffer T
    Curr Opin Neurobiol; 2017 Apr; 43():87-93. PubMed ID: 28236778
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanisms of GABAergic homeostatic plasticity.
    Wenner P
    Neural Plast; 2011; 2011():489470. PubMed ID: 21876819
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neural ECM molecules in axonal and synaptic homeostatic plasticity.
    Frischknecht R; Chang KJ; Rasband MN; Seidenbecher CI
    Prog Brain Res; 2014; 214():81-100. PubMed ID: 25410354
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential activity-dependent, homeostatic plasticity of two neocortical inhibitory circuits.
    Bartley AF; Huang ZJ; Huber KM; Gibson JR
    J Neurophysiol; 2008 Oct; 100(4):1983-94. PubMed ID: 18701752
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function.
    Turrigiano G
    Cold Spring Harb Perspect Biol; 2012 Jan; 4(1):a005736. PubMed ID: 22086977
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cell adhesion and homeostatic synaptic plasticity.
    Thalhammer A; Cingolani LA
    Neuropharmacology; 2014 Mar; 78():23-30. PubMed ID: 23542441
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synaptic and intrinsic homeostatic mechanisms cooperate to increase L2/3 pyramidal neuron excitability during a late phase of critical period plasticity.
    Lambo ME; Turrigiano GG
    J Neurosci; 2013 May; 33(20):8810-9. PubMed ID: 23678123
    [TBL] [Abstract][Full Text] [Related]  

  • 53. GABAergic synaptic scaling in embryonic motoneurons is mediated by a shift in the chloride reversal potential.
    Gonzalez-Islas C; Chub N; Garcia-Bereguiain MA; Wenner P
    J Neurosci; 2010 Sep; 30(39):13016-20. PubMed ID: 20881119
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Excitatory synaptic transmission and network activity are depressed following mechanical injury in cortical neurons.
    Goforth PB; Ren J; Schwartz BS; Satin LS
    J Neurophysiol; 2011 May; 105(5):2350-63. PubMed ID: 21346214
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity].
    Le Roux N; Amar M; Fossier P
    J Soc Biol; 2008; 202(2):143-60. PubMed ID: 18547512
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interleukin-10 Facilitates Glutamatergic Synaptic Transmission and Homeostatic Plasticity in Cultured Hippocampal Neurons.
    Nenov MN; Konakov MV; Teplov IY; Levin SG
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31324059
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MicroRNA-186-5p controls GluA2 surface expression and synaptic scaling in hippocampal neurons.
    Silva MM; Rodrigues B; Fernandes J; Santos SD; Carreto L; Santos MAS; Pinheiro P; Carvalho AL
    Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5727-5736. PubMed ID: 30808806
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Denervated mouse dentate granule cells adjust their excitatory but not inhibitory synapses following in vitro entorhinal cortex lesion.
    Lenz M; Galanis C; Kleidonas D; Fellenz M; Deller T; Vlachos A
    Exp Neurol; 2019 Feb; 312():1-9. PubMed ID: 30401642
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei.
    Zheng N; Raman IM
    Cerebellum; 2010 Mar; 9(1):56-66. PubMed ID: 19847585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PKA-GluA1 coupling via AKAP5 controls AMPA receptor phosphorylation and cell-surface targeting during bidirectional homeostatic plasticity.
    Diering GH; Gustina AS; Huganir RL
    Neuron; 2014 Nov; 84(4):790-805. PubMed ID: 25451194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.